Introductory Chapter: Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

<jats:p />

[1]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[2]  Javier Del Ser,et al.  A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems , 2021, Swarm Evol. Comput..

[3]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[4]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[5]  Jay Lee,et al.  Industrial Artificial Intelligence for industry 4.0-based manufacturing systems , 2018, Manufacturing Letters.

[6]  Thomas Hess,et al.  Digital Transformation Strategies , 2015, Business & Information Systems Engineering.

[7]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[8]  Wojciech Samek,et al.  Explainable ai – preface , 2019 .

[9]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[10]  Javier Del Ser,et al.  AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking , 2020, Inf. Sci..

[11]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[12]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[13]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..