McGinty Monkeys exhibit human-like gaze biases in economic decisions 1

[1]  E. Fehr,et al.  A causal role for the right frontal eye fields in value comparison , 2021, bioRxiv.

[2]  Hong‐Zhi Liu,et al.  Exploiting the dynamics of eye gaze to bias intertemporal choice , 2020 .

[3]  Hong‐Zhi Liu,et al.  The power of last fixation: Biasing simple choices by gaze-contingent manipulation. , 2020, Acta psychologica.

[4]  L. Rao,et al.  The timing of gaze-contingent decision prompts influences risky choice , 2019, Cognition.

[5]  I. Krajbich Accounting for attention in sequential sampling models of decision making. , 2019, Current opinion in psychology.

[6]  Jessica I. Määttä,et al.  Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work , 2019, Science.

[7]  Hauke R. Heekeren,et al.  GLAMbox: A Python toolbox for investigating the association between gaze allocation and decision behaviour , 2019, bioRxiv.

[8]  Rachael E. Gwinn,et al.  The spillover effects of attentional learning on value-based choice , 2019, Cognition.

[9]  I. Krajbich,et al.  Gaze Amplifies Value in Decision Making , 2018, Psychological science.

[10]  I. Krajbich,et al.  Attention and Choice Across Domains , 2018, Journal of experimental psychology. General.

[11]  J. Nadal,et al.  Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics , 2018, The Journal of Neuroscience.

[12]  Pietro Perona,et al.  The Attentional Drift Diffusion Model of Simple Perceptual Decision-Making , 2017, Front. Neurosci..

[13]  LT Hunt,et al.  Triple Dissociation of Attention and Decision Computations across Prefrontal Cortex , 2017, bioRxiv.

[14]  M. A. Pisauro,et al.  Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI , 2017, Nature Communications.

[15]  Yuan Chang Leong,et al.  Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments , 2017, Neuron.

[16]  S. Fleming,et al.  Explicit representation of confidence informs future value-based decisions , 2016, Nature Human Behaviour.

[17]  A. Gelman,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2016, Statistics and Computing.

[18]  W. Newsome,et al.  Orbitofrontal Cortex Value Signals Depend on Fixation Location during Free Viewing , 2016, Neuron.

[19]  Jonathan W. Pillow,et al.  Dissociated functional significance of decision-related activity in the primate dorsal stream , 2016, Nature.

[20]  Erin L. Rich,et al.  Decoding subjective decisions from orbitofrontal cortex , 2016, Nature Neuroscience.

[21]  Christopher R Fetsch,et al.  The importance of task design and behavioral control for understanding the neural basis of cognitive functions , 2016, Current Opinion in Neurobiology.

[22]  Ali Ghazizadeh,et al.  Dopamine Neurons Encoding Long-Term Memory of Object Value for Habitual Behavior , 2015, Cell.

[23]  Lesley K Fellows,et al.  Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans , 2015, The Journal of Neuroscience.

[24]  Brandon M. Turner,et al.  The neural basis of value accumulation in intertemporal choice , 2015, The European journal of neuroscience.

[25]  C. Olson,et al.  Macaque monkeys experience visual crowding. , 2015, Journal of vision.

[26]  Christian Balkenius,et al.  Biasing moral decisions by exploiting the dynamics of eye gaze , 2015, Proceedings of the National Academy of Sciences.

[27]  M. Husain,et al.  Attention as foraging for information and value , 2013, Front. Hum. Neurosci..

[28]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[29]  J. Rieskamp,et al.  Deciding When to Decide: Time-Variant Sequential Sampling Models Explain the Emergence of Value-Based Decisions in the Human Brain , 2012, The Journal of Neuroscience.

[30]  Colin Camerer,et al.  Transformation of stimulus value signals into motor commands during simple choice , 2011, Proceedings of the National Academy of Sciences.

[31]  Antonio Rangel,et al.  The Decision Value Computations in the vmPFC and Striatum Use a Relative Value Code That is Guided by Visual Attention , 2011, The Journal of Neuroscience.

[32]  A. Rangel,et al.  Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions , 2011, Proceedings of the National Academy of Sciences.

[33]  Patryk A. Laurent,et al.  Value-driven attentional capture , 2011, Proceedings of the National Academy of Sciences.

[34]  D. Levi,et al.  Visual crowding: a fundamental limit on conscious perception and object recognition , 2011, Trends in Cognitive Sciences.

[35]  Ian Krajbich,et al.  Visual fixations and the computation and comparison of value in simple choice , 2010, Nature Neuroscience.

[36]  K. Hoffmann,et al.  Role of the rostral superior colliculus in gaze anchoring during reach movements. , 2010, Journal of neurophysiology.

[37]  P. Glimcher,et al.  The Neurobiology of Decision: Consensus and Controversy , 2009, Neuron.

[38]  D. Wolpert,et al.  Changing your mind: a computational mechanism of vacillation , 2009, Nature.

[39]  Steven P. Wise,et al.  Forward frontal fields: phylogeny and fundamental function , 2008, Trends in Neurosciences.

[40]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[41]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[42]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[43]  Juha Silvanto,et al.  Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. , 2006, Journal of neurophysiology.

[44]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[45]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[46]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[47]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[48]  H. Bekkering,et al.  Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. , 2001, Journal of neurophysiology.

[49]  K. Hoffmann,et al.  Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. , 2000, Journal of neurophysiology.

[50]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[51]  H. Bekkering,et al.  Ocular gaze is anchored to the target of an ongoing pointing movement. , 2000, Journal of neurophysiology.

[52]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[53]  V. McGinty,et al.  Value signals in orbitofrontal cortex predict economic decisions on a trial-to-trial basis , 2021 .

[54]  Lloyd H. Michael,et al.  The Guide for the Care and Use of Laboratory Animals. , 2016, ILAR journal.

[55]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.