Disjointness is Hard in the Multiparty Number-on-the-Forehead Model

Abstract.We show that disjointness requires randomized communication $$\Omega(\frac{n^{1/(k+1)}}{2^{2^k}})$$ in the general k-party number-on-the-forehead model of complexity. The previous best lower bound for k ≥ 3 was $$\frac{{\rm log} \, n}{k-1}$$. Our results give a separation between nondeterministic and randomized multiparty number-on-the-forehead communication complexity for up to k = log log n − O(log log log n) many players. Also, by a reduction of Beame, Pitassi, and Segerlind, these results imply subexponential lower bounds on the size of proofs needed to refute certain unsatisfiable CNFs in a broad class of proof systems, including tree-like Lovász–Schrijver proofs.

[1]  Arkadev Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[2]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[3]  Arist Kojevnikov,et al.  Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies , 2006, ICALP.

[4]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[5]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[6]  Paul Beame,et al.  Multiparty Communication Complexity of AC^0 , 2008, Electron. Colloquium Comput. Complex..

[7]  Arkadev Chattopadhyay,et al.  Multiparty Communication Complexity of Disjointness , 2008, Electron. Colloquium Comput. Complex..

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Vince Grolmusz,et al.  The BNS Lower Bound for Multi-Party Protocols in Nearly Optimal , 1994, Inf. Comput..

[10]  Thomas P. Hayes,et al.  The Cost of the Missing Bit: Communication Complexity with Help , 1998, STOC '98.

[11]  Denis Thérien,et al.  Computational complexity questions related to finite monoids and semigroups , 2003 .

[12]  Eyal Kushilevitz,et al.  Fractional covers and communication complexity , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[13]  Thomas P. Hayes,et al.  The Cost of the Missing Bit: Communication Complexity with Help , 2001, Comb..

[14]  Nathan Linial,et al.  Lower bounds in communication complexity based on factorization norms , 2007, STOC '07.

[15]  Nathan Linial,et al.  Complexity measures of sign matrices , 2007, Comb..

[16]  A. S The Pattern Matrix Method for Lower Bounds on Quantum Communication ∗ , 2007 .

[17]  Ran Raz,et al.  The BNS-Chung criterion for multi-party communication complexity , 2000, computational complexity.

[18]  Robert Spalek,et al.  A Dual Polynomial for OR , 2008, ArXiv.

[19]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[20]  AbelsonHarold Lower Bounds on Information Transfer in Distributed Computations , 1980 .

[21]  Fan Chung Graham,et al.  Quasi-Random Classes of Hypergraphs , 1990, Random Struct. Algorithms.

[22]  Yaoyun Shi,et al.  Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..

[23]  Emanuele Viola,et al.  One-way multiparty communication lower bound for pointer jumping with applications , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[24]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[25]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[26]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for GF(2) Polynomials and Multiparty Protocols , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[27]  Andrew C. Yao,et al.  Lower bounds by probabilistic arguments , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[28]  Hartmut Klauck Lower Bounds for Quantum Communication Complexity , 2007, SIAM J. Comput..

[29]  Alexander A. Sherstov Separating AC0 from depth-2 majority circuits , 2007, STOC '07.

[30]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1991, computational complexity.

[31]  Emanuele Viola,et al.  Improved Separations between Nondeterministic and Randomized Multiparty Communication , 2008, TOCT.

[32]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[33]  Harold Abelson,et al.  Lower bounds on information transfer in distributed computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[34]  Toniann Pitassi,et al.  Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2005, ICALP.

[35]  G. Jameson Summing and nuclear norms in Banach space theory , 1987 .

[36]  Richard Beigel,et al.  On ACC , 1994, computational complexity.

[37]  Noam Nisan,et al.  Multiparty protocols and logspace-hard pseudorandom sequences , 1989, STOC '89.

[38]  A. Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, FOCS 2007.

[39]  Alexander A. Sherstov The pattern matrix method for lower bounds on quantum communication , 2008, STOC '08.

[40]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..