Colorimetric chemical sensing properties of 3-amino-4-hydroxybenzenesulfonic acid-based Schiff bases containing electron donor-acceptor groups

[1]  A. Karatay,et al.  Two-photon absorption and triplet excited state quenching of near-IR region aza-BODIPY photosensitizers via a triphenylamine moiety despite heavy bromine atoms. , 2022, Physical chemistry chemical physics : PCCP.

[2]  A. Karatay,et al.  Colorimetric Probing and Fluorescent Chemosensor Features of Functionalized Sulphonamide-Azomethine Derivatives , 2022, Journal of Photochemistry and Photobiology A: Chemistry.

[3]  A. Karatay,et al.  Naked-eye colorimetric anion probing and fluorescent switching features of conjugated Schiff Bases derived from 4-(Trifluoromethyl) benzenesulfonamide , 2022, Journal of Luminescence.

[4]  G. Wei,et al.  a Versatile Schiff Base Chemosensor for the Determination of Trace Co2+, Ni2+, Cu2+, and Zn2+ in the Water and Its Bioimaging Applications , 2022, ACS omega.

[5]  F. Alhumaydhi,et al.  Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review , 2021, Journal of Environmental Chemical Engineering.

[6]  A. Karatay,et al.  Colorimetric probe and optical behaviours of new azomethine derivatives of sulfonamide , 2021, Journal of Molecular Structure.

[7]  K. Ayub,et al.  DFT study on the sensitivity of silver-graphene quantum dots for vital and harmful analytes , 2021 .

[8]  Liyan Yu,et al.  Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns , 2021 .

[9]  A. Shiroudi,et al.  Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects , 2021 .

[10]  E. Shiju,et al.  A Schiff base colorimetric chemosensor for CN ‐ ion and its dioxidomolybdenum (VI) complexes: Evaluation of structural aspects and optoelectronic properties , 2020 .

[11]  Ali Q. Alorabi,et al.  Colorimetric Detection of Multiple Metal Ions Using Schiff Base 1-(2-Thiophenylimino)-4-(N-dimethyl)benzene , 2019, Chemosensors.

[12]  R. Faccio,et al.  Electronic and optical properties of sulfur and nitrogen doped graphene quantum dots: A theoretical study , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[13]  M. Yıldız,et al.  Synthesis, characterization, and application of a novel water-soluble polyethyleneimine-based Schiff base colorimetric chemosensor for metal cations and biological activity , 2017 .

[14]  E. Louis,et al.  Are Electron Affinity and Ionization Potential Intrinsic Parameters to Predict the Electron or Hole Acceptor Character of Amorphous Molecular Materials? , 2017, The journal of physical chemistry letters.

[15]  O. Arotiba,et al.  Electrochemical detection of Hg(II) in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid) on gold electrode , 2016 .

[16]  M. Yıldız,et al.  Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde , 2015 .

[17]  Raziyeh Arabahmadi,et al.  Azo Schiff bases as colorimetric and fluorescent sensors for recognition of F−, Cd2+ and Hg2+ ions , 2014 .

[18]  P. R. Rajamohanan,et al.  Orthanilic acid-promoted reverse turn formation in peptides. , 2013, Chemical communications.

[19]  C. Supuran,et al.  Synthesis, characterization and biological studies of sulfonamide Schiff’s bases and some of their metal derivatives , 2012, Journal of enzyme inhibition and medicinal chemistry.

[20]  A. Epstein,et al.  Synthesis and characterization of cytocompatible sulfonated polyanilines. , 2011, Macromolecular rapid communications.

[21]  G. Busca Acid catalysts in industrial hydrocarbon chemistry. , 2007, Chemical reviews.

[22]  Hiroshi Kageyama,et al.  Charge carrier transporting molecular materials and their applications in devices. , 2007, Chemical reviews.

[23]  F. Prenafeta-Boldú,et al.  Fate and biodegradability of sulfonated aromatic amines , 2005, Biodegradation.

[24]  Muhammad Mohsin Tahir,et al.  Intramolecular hydrogen bonding and tautomerism in Schiff bases. Structure of N-(2-pyridil)-2-oxo-1-naphthylidenemethylamine , 2000 .

[25]  Paul G Tratnyek,et al.  Reduction of azo dyes with zero-valent iron , 2000 .

[26]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[27]  F. G. Bordwell,et al.  Equilibrium Acidities in Dimethyl Sulfoxide Solution , 1988 .

[28]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[29]  Joseph F. Bunnett,et al.  Aromatic Nucleophilic Substitution Reactions. , 1951 .

[30]  B. Jarosch,et al.  Organische Chemie I , 2019, Pocket Guide Chemie.

[31]  T. Heine,et al.  Efficient calculation of electronic absorption spectra by means of intensity-selected time-dependent density functional tight binding. , 2015, Journal of chemical theory and computation.

[32]  Min Wu,et al.  Environmental benefits of methanesulfonic acid. Comparative properties and advantages , 1999 .

[33]  R. Matucci,et al.  Effect of taurine, L-cysteic and orthanilic acids on cardiac tension. , 1990, Progress in clinical and biological research.

[34]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .