Metastable behavior of noble gas inserted tin and lead fluorides.

Ab initio computations are carried out to explore the structure and stability of FNgEF3 and FNgEF (E = Sn, Pb; Ng = Kr-Rn) compounds. They are the first reported systems to possess Ng-Sn and Ng-Pb bonds. Except for FKrEF3, the dissociations of FNgSnF3 and FNgEF, producing Ng and SnF4 or EF2, are only exergonic in nature at room temperature, whereas FNgPbF3 has a thermochemical instability with respect to two two-body dissociation channels. However, they are kinetically stable, having positive activation barriers (ranging from 2.2 to 49.9 kcal mol(-1)) with respect to those dissociations. The kinetic stability gradually improves in moving from the Kr to Rn analogues. The remaining possible dissociation channels for these compounds are found to be endergonic in nature. The nature of the bonding is analyzed by natural bond order, electron density, and energy decomposition analyses. Particularly, the natural population analysis reveals that they are best represented as F(-)(NgEF3)(+) and F(-)(NgEF)(+). All the Xe/Rn-E bonds in FNgEF3 and FNgEF are covalent in nature.

[1]  S. Ryazantsev,et al.  Photolabile xenon hydrides: a case study of HXeSH and HXeH. , 2013, The Journal of chemical physics.

[2]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[3]  K. Christe Bartlett's discovery of noble gas fluorides, a milestone in chemical history. , 2013, Chemical communications.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Angela K. Wilson,et al.  The existence of FKrCF3, FKrSiF3, and FKrGeF3: A theoretical study , 2005 .

[6]  J. Beauchamp,et al.  Xenon as a Nucleophile in Gas-Phase Displacement Reactions: Formation of the Methyl Xenonium Ion , 1971, Science.

[7]  Michael C. L. Gerry,et al.  Noble Gas−Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar−AuCl and Kr−AuCl , 2000 .

[8]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[9]  Gary J. Schrobilgen,et al.  The fluoro(hydrogen cyanide)xenon(II) cation. Preparation of HC.tplbond.NXeF+AsF6-: a multinuclear magnetic resonance and Raman spectroscopic study , 1992 .

[10]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[11]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[12]  Felice Grandinetti,et al.  The gaseous trifluorosilylxenon cation, F3SiXe+: a stable species with a silicon–xenon bond , 1995 .

[13]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[14]  Tapan K. Ghanty,et al.  Theoretical prediction of rare gas containing hydride cations: HRgBF+ (Rg = He, Ar, Kr, and Xe). , 2013, The journal of physical chemistry. A.

[15]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[16]  Vladimir I. Feldman,et al.  Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix , 1996 .

[17]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[18]  Lester Andrews,et al.  Reactions of laser ablated Be atoms with O2: Infrared spectra of beryllium oxides in solid argon , 1994 .

[19]  Markku Räsänen,et al.  Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. , 2012, Inorganic chemistry.

[20]  W. Grochala Atypical compounds of gases, which have been called 'noble'. , 2007, Chemical Society reviews.

[21]  T. Ghanty,et al.  Theoretical prediction of HRgCO(+) ion (Rg=He, Ne, Ar, Kr, and Xe). , 2008, The Journal of chemical physics.

[22]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[23]  Jon Baker,et al.  Rare-gas insertion compounds of perfluorobenzene: aromaticity of some unstable species. , 2005, The Journal of chemical physics.

[24]  Pratim K Chattaraj,et al.  In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. , 2014, The journal of physical chemistry. A.

[25]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[26]  Vladimir I. Feldman,et al.  Further evidence for formation of xenon dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results , 1997 .

[27]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[28]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[29]  Pekka Pyykkö,et al.  Molecular double-bond covalent radii for elements Li-E112. , 2009, Chemistry.

[30]  Stefano Borocci,et al.  Neutral helium compounds: theoretical evidence for a large class of polynuclear complexes. , 2006, Chemistry.

[31]  Pratim K Chattaraj,et al.  Confinement induced binding of noble gas atoms. , 2014, The Journal of chemical physics.

[32]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[33]  Michael C. L. Gerry,et al.  The microwave spectrum and structure of KrAgF , 2002 .

[34]  F. J. Duncan,et al.  Production and Reactions of Methylene in the Triplet State , 1962 .

[35]  Hélène P A Mercier,et al.  Ennobling an old molecule: thiazyl trifluoride (N≡SF3), a versatile synthon for Xe-N bond formation. , 2011, Inorganic chemistry.

[36]  Michael C. L. Gerry,et al.  Noble gas metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar AuF and Ar AuBr , 2000 .

[37]  Vladimir I Feldman,et al.  Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. , 2003, Journal of the American Chemical Society.

[38]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[39]  Wojciech Grochala,et al.  On Chemical Bonding Between Helium and Oxygen , 2009 .

[40]  David S Brock,et al.  [H(OXeF2)n][AsF6] and [FXe(II)(OXe(IV)F2)n][AsF6] (n = 1, 2): examples of xenon(IV) hydroxide fluoride and oxide fluoride cations and the crystal structures of [F3Xe---FH][Sb2F11] and [H5F4][SbF6]·2[F3Xe---FH][Sb2F11]. , 2013, Journal of the American Chemical Society.

[41]  T. Ghanty,et al.  Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. , 2007, The Journal of chemical physics.

[42]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[43]  J. Lehmann The chemistry of krypton , 2002 .

[44]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[45]  Henrik Kunttu,et al.  On photochemistry of water in solid Xe: Thermal and light-induced decomposition of HXeOH and HXeH and formation of H2O2 , 2002 .

[46]  Mariusz Klobukowski,et al.  Structure and stability of organic molecules containing heavy rare gas atoms , 2013, Theoretical Chemistry Accounts.

[47]  Gary J. Schrobilgen,et al.  The fluoro(hydrocyano)krypton(II) cation [HCN–Kr–F]+; the first example of a krypton–nitrogen bond , 1988 .

[48]  Tom Leyssens,et al.  Theoretical chemistry in Belgium , 2013, Theoretical Chemistry Accounts.

[49]  W. Marsden I and J , 2012 .

[50]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[51]  V. Bardin,et al.  Trifluorovinylxenon(II) tetrafluoroborate , 1999 .

[52]  Felice Grandinetti,et al.  Helium Chemistry: A Survey of the Role of the Ionic Species , 2004 .

[53]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[54]  R. Hoppe,et al.  Fluorination of Xenon , 1962 .

[55]  G. Frenking,et al.  Spacer separated donor-acceptor complexes [D→C6F4→BF3] (D = Xe, CO, N2) and the dication [Xe→C6F4←Xe]2+. A theoretical study. , 2012, Inorganic chemistry.

[56]  W. Jäger,et al.  Investigation of the Ne-NH3 van der Waals complex: Rotational spectrum and ab initio calculations , 2001 .

[57]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[58]  Jan Lundell,et al.  Insertion of noble gas atoms into cyanoacetylene: an ab initio and matrix isolation study. , 2006, The journal of physical chemistry. A.

[59]  Jan Lundell,et al.  Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). , 2010, The journal of physical chemistry. A.

[60]  Jan Lundell,et al.  Quantum chemical calculations on FXeSiF , 2001 .

[61]  Gary J. Schrobilgen,et al.  Synthesis of [F3S≡NXeF][AsF6] and structural study by multi-NMR and raman spectroscopy, electronic structure calculations, and X-ray crystallography , 2007 .

[62]  Jun Li,et al.  Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. , 2004, Angewandte Chemie.

[63]  Miquel Solà,et al.  Polycyclic benzenoids: why kinked is more stable than straight. , 2007, The Journal of organic chemistry.

[64]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[65]  Min Zhang,et al.  Ab initio study of the organic xenon insertion compound into ethylene and ethane. , 2013, The Journal of chemical physics.

[66]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[67]  Roald Hoffmann,et al.  Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F-) at large compression. , 2011, Inorganic chemistry.

[68]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[69]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[70]  Michael C. L. Gerry,et al.  Insights into the xenon–silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl , 2004 .

[71]  Stefano Borocci,et al.  Neutral compounds with xenon-germanium bonds: a theoretical investigation on FXeGeF and FXeGeF₃. , 2014, The journal of physical chemistry. A.

[72]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[73]  Sean A C McDowell,et al.  Are insertion compounds of CH2CHF and the rare gases stable? A computational study. , 2004, The Journal of chemical physics.

[74]  Michael C. L. Gerry,et al.  Microwave Spectrum, Structure, and Hyperfine Constants of Kr-AgCl: Formation of a Weak Kr-Ag Covalent Bond. , 2001, Journal of molecular spectroscopy.

[75]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[76]  Debashree Manna,et al.  Theoretical prediction of XRgCO(+) ions (X = F, Cl, and Rg = Ar, Kr, Xe). , 2013, The journal of physical chemistry. A.

[77]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[78]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[79]  M. Heaven,et al.  Spectroscopic characterization of the C2-Ne van der Waals complex. , 2006, The Journal of chemical physics.

[80]  S. G. Semenov,et al.  Quantum-chemical study of organoxenon molecules Xe(CF3)2 and FXeCF3 , 2004 .

[81]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[82]  U. Westphal,et al.  Two new types of xenon-carbon species: the zwitterion, 1-(Xe+)C6F4-4-(BF3-), and the dication, [1,4-(Xe)2C6F4]2+. , 2012, Inorganic chemistry.

[83]  V. Bardin,et al.  Trifluoropropynylxenon(II) tetrafluoroborate [CF3CCXe][BF4] – isolation of an alkynylxenon(II) compound for the first time , 2003 .

[84]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[85]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[86]  Stefano Borocci,et al.  From OBeHe to H3BOBeHe: Enhancing the stability of a neutral helium compound , 2005 .

[87]  D. Yost,et al.  AN ATTEMPT TO PREPARE A CHLORIDE OR FLUORIDE OF XENON , 1933 .

[88]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[89]  Vladimir I Feldman,et al.  Direct visualization of the H-Xe bond in xenon hydrides: xenon isotopic shift in the IR spectra. , 2009, The Journal of chemical physics.

[90]  Jun Li,et al.  Noble gas-actinide compounds: evidence for the formation of distinct CUO(Ar)(4-n)(Xe)(n) and CUO(Ar)(4-n)(Kr)(n) (n = 1, 2, 3, 4) complexes. , 2002, Journal of the American Chemical Society.

[91]  Debashree Manna,et al.  Theoretical prediction of noble gas inserted thioformyl cations: HNgCS⁺ (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The journal of physical chemistry. A.

[92]  A. Cunje,et al.  Bonding of Rare-Gas Atoms to Si in Reactions of Rare Gases with SiF3 + , 2001 .

[93]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[94]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[95]  A. S. Dickinson,et al.  Accuracy of recent potential energy surfaces for the He-N2 interaction. I. Virial and bulk transport coefficients. , 2007, The Journal of chemical physics.

[96]  W. Tyrra,et al.  The first compound with a stable xenon−carbon bond: 19F- and 129Xe-N.M.R. spectroscopic evidence for pentafluorophenylxenon(II) fluoroborates , 1989 .

[97]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .

[98]  Gernot Frenking,et al.  Energy decomposition analysis , 2020, Catalysis from A to Z.

[99]  M. Pettersson,et al.  A more stable configuration of HArF in solid argon. , 2001, Journal of the American Chemical Society.

[100]  Venkatesan Subramanian,et al.  Structure and stability of (NG)nCN3Be3(+) clusters and comparison with (NG)BeY(0/+). , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[101]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[102]  Pratim K. Chattaraj,et al.  Attractive Xe-Li interaction in Li-decorated clusters , 2013 .

[103]  Gary J. Schrobilgen,et al.  Synthesis, multinuclear magnetic resonance and Raman study of nitrogen-15-enriched Xe[N(SO2F)2]2, an example of xenon-nitrogen bonding. Solution behavior of [15N]-F[XeN(SO2F)2]2+AsF6- , 1983 .

[104]  M. Gerry,et al.  Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. , 2004, Journal of the American Chemical Society.

[105]  Michael C. L. Gerry,et al.  The microwave spectra and structures of Ar–AgX (X=F,Cl,Br) , 2000 .

[106]  Pratim K Chattaraj,et al.  C5Li7(+) and O2Li5(+) as noble-gas-trapping agents. , 2013, Chemistry.

[107]  Laura J. Turbini,et al.  Evidence for the synthesis of a stable .sigma.-bonded xenon-carbon compound: bis(trifluoromethyl)xenon , 1979 .

[108]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[109]  T. Ghanty,et al.  Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, Cl, and Br]: an ab initio investigation. , 2006, The Journal of chemical physics.

[110]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[111]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[112]  Pratim K Chattaraj,et al.  Ab initio study on the stability of Ng(n)Be₂N₂, Ng(n)Be₃N₂ and NgBeSiN₂ clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[113]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[114]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[115]  Lorenza Operti,et al.  Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+. , 2011, Chemistry.

[116]  Paola Antoniotti,et al.  Stable Compounds of the Lightest Noble Gases: A Computational Investigation of RNBeNg (Ng = He, Ne, Ar) , 2003 .

[117]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[118]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[119]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[120]  Pratim K Chattaraj,et al.  Stability of noble-gas-bound SiH₃⁺ clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[121]  V. Bardin,et al.  Organoethynylxenon(II) Tetrafluoroborates, [RC≡CXe][BF4] – The First Examples of Isolated Alkynylxenonium Salts: Preparation and Multi-NMR Characterisation , 2006 .

[122]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[123]  Gerald Henkel,et al.  The Acetonitrile(pentafluorophenyl)xenon(II) Cation, [MeCN ? Xe–C6F5]⊕: The First Structural Characterization of a Xenon ? Carbon Bond , 1989 .

[124]  B. Miguel,et al.  A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents , 1990 .

[125]  W. Kossel Über Molekülbildung als Frage des Atombaus , 1916 .

[126]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[127]  Hans Martin Senn,et al.  Metal-metal and metal-ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO)10. , 2010, The journal of physical chemistry. A.

[128]  Lorenza Operti,et al.  F3Ge-Xe+: a Xenon-Germanium Molecular Species , 2010 .

[129]  M. Gerry,et al.  Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. , 2004, Inorganic chemistry.

[130]  H. Frohn,et al.  C6F5XeY molecules (Y = F and Cl): new synthetic approaches. first structural proof of the organoxenon halide molecule C6F5XeF. , 2013, Acta Chimica Slovenica.

[131]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[132]  R. Benny Gerber,et al.  Lifetimes of compounds made of noble-gas atoms with water , 2009 .

[133]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[134]  Detlef Schröder,et al.  Generation of the ArCF22+ Dication , 2010 .

[135]  Michael C. L. Gerry,et al.  Noble gas–metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar–CuX(X=F, Cl, Br) , 2000 .

[136]  Hermann Josef Frohn,et al.  The pentafluorophenylxenon(II) cation: [C6F5Xe]+; the first stable system with a xenon–carbon bond , 1989 .

[137]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[138]  R. Benny Gerber,et al.  Quantum Chemical Calculations on Novel Molecules from Xenon Insertion into Hydrocarbons , 2002 .

[139]  Piero Macchi,et al.  Charge Density in Transition Metal Clusters: Supported vs Unsupported Metal−Metal Interactions , 1999 .

[140]  Michael J. Hughes,et al.  A Raman spectroscopic study of the XeOF4/XeF2 system and the X-ray crystal structure of α-XeOF4·XeF2 , 2011 .

[141]  Sebastian Riedel,et al.  Investigation of gold fluorides and noble gas complexes by matrix-isolation spectroscopy and quantum-chemical calculations. , 2012, Angewandte Chemie.

[142]  B. Žemva,et al.  Synthesis, Properties and Chemistry of Xenon(II) Fluoride , 2007 .

[143]  Hélène P A Mercier,et al.  Noble-gas difluoride complexes of mercury(II): the syntheses and structures of Hg(OTeF5)2·1.5NgF2 (Ng = Xe, Kr) and Hg(OTeF5)2. , 2014, Journal of the American Chemical Society.

[144]  Mariusz Klobukowski,et al.  Improved model core potentials: Application to the thermochemistry of organoxenon complexes , 2002 .

[145]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[146]  Lester Andrews,et al.  Noble Gas Complexes with BeO: Infrared Spectra of NG-BeO (NG = Ar, Kr, Xe) , 1994 .

[147]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[148]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[149]  Philip Coppens,et al.  Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion and comparison with time-resolved X-ray and spectroscopic results. , 2003, Journal of the American Chemical Society.

[150]  V. Bardin,et al.  Preparation and Reactivity of Compounds Containing a Carbon−Xenon Bond , 2001 .

[151]  Jun Li,et al.  Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices , 2002, Science.

[152]  T. Ghanty,et al.  Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe). , 2008, The Journal of chemical physics.

[153]  Wei-Ping Hu,et al.  On the stability of noble gas molecules , 2007 .