Full‐Solution Processed Flexible Organic Solar Cells Using Low‐Cost Printable Copper Electrodes

Full-solution-processed flexible organic solar cells (OSCs) are fabricated using low-cost and high-quality printable Cu electrodes, which achieve a power conversion efficiency as high as 2.77% and show remarkable stability upon 1000 bending cycles. This device performance is thought to be the best among all full-solution-processed OSCs reported in the literature using the same active materials. This printed Cu electrode is promising for application in roll-to-roll fabrication of flexible OSCs.

[1]  M. Halik,et al.  ITO‐Free and Fully Solution‐Processed Semitransparent Organic Solar Cells with High Fill Factors , 2013 .

[2]  Yi Cui,et al.  Electrospun metal nanofiber webs as high-performance transparent electrode. , 2010, Nano letters.

[3]  Ruijun Chen,et al.  Top-illuminated organic solar cells fabricated by vacuum-free and all-solution processes , 2013 .

[4]  B. Wiley,et al.  Solution-processed copper-nickel nanowire anodes for organic solar cells. , 2014, Nanoscale.

[5]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[6]  F. Huang,et al.  Interface Engineering for High Performance Bulk-Heterojunction Polymeric Solar Cells , 2013 .

[7]  Yi Cui,et al.  Semitransparent organic photovoltaic cells with laminated top electrode. , 2010, Nano letters.

[8]  Qibing Pei,et al.  Highly flexible polymer light-emitting devices using carbon nanotubes as both anodes and cathodes , 2011 .

[9]  Frederik C. Krebs,et al.  Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide , 2009 .

[10]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[11]  Jooho Moon,et al.  Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics , 2014 .

[12]  Mikkel Jørgensen,et al.  All printed transparent electrodes through an electrical switching mechanism: A convincing alternative to indium-tin-oxide, silver and vacuum , 2012 .

[13]  F. Krebs,et al.  Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells , 2014 .

[14]  Yi Li,et al.  Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. , 2010, ACS applied materials & interfaces.

[15]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[16]  Markus Hösel,et al.  All solution processing of ITO-free organic solar cell modules directly on barrier foil , 2012 .

[17]  Suren A. Gevorgyan,et al.  Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules , 2013 .

[18]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[19]  D. Hess,et al.  A Novel Method of Etching Copper Oxide Using Acetic Acid , 2001 .

[20]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[21]  Ritu Gupta,et al.  Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network , 2014 .

[22]  Zhuang Xie,et al.  Three‐Dimensional Compressible and Stretchable Conductive Composites , 2014, Advanced materials.

[23]  W. P. Voorthuijzen,et al.  All-solution-processed organic solar cells with conventional architecture , 2013 .

[24]  Sunho Jeong,et al.  All‐Solution‐Processed Indium‐Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin‐Film Solar Cells , 2014 .

[25]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[26]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[27]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[28]  Markus Hösel,et al.  Large scale deployment of polymer solar cells on land, on sea and in the air , 2014 .

[29]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[30]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[31]  Hyun Wook Kang,et al.  Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. , 2013, Nanoscale.

[32]  Bernard Kippelen,et al.  Indium tin oxide-free and metal-free semitransparent organic solar cells , 2010 .

[33]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[34]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[35]  William J. Potscavage,et al.  Critical interfaces in organic solar cells and their influence on the open-circuit voltage. , 2009, Accounts of chemical research.

[36]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[37]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[38]  Yi Cui,et al.  Electrolessly deposited electrospun metal nanowire transparent electrodes. , 2014, Journal of the American Chemical Society.

[39]  Suren A. Gevorgyan,et al.  A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers , 2014 .

[40]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[41]  S. Rhee,et al.  Effect of electrode material on the resistance switching of Cu2O film , 2007 .

[42]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[43]  J. D. de Mello,et al.  Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. , 2014, ACS nano.

[44]  Mikkel Jørgensen,et al.  ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules , 2011 .

[45]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[46]  Zhuang Xie,et al.  Matrix‐Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors , 2013, Advances in Materials.

[47]  Rengmao Wu,et al.  Inverted indium-tin-oxide-free cone-shaped polymer solar cells for light trapping , 2012 .

[48]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[49]  H. J. van de Wiel,et al.  Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices , 2013, Nanotechnology.

[50]  Qibing Pei,et al.  Highly Flexible Silver Nanowire Electrodes for Shape‐Memory Polymer Light‐Emitting Diodes , 2011, Advanced materials.

[51]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[52]  Mikkel Jørgensen,et al.  Roll‐to‐Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration , 2013 .

[53]  F. A. Benko,et al.  A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , 1982 .

[54]  Zijian Zheng,et al.  Polymer‐Assisted Metal Deposition (PAMD): A Full‐Solution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors , 2014, Advanced materials.