Laser–Material Interactions for Flexible Applications

The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser‐beam‐induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two‐dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic‐based flexible electronics. In order to resolve temperature issues with plastic substrates, laser–material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser–material interactions for inorganic‐based flexible applications with regard to both materials and processes are presented.

[1]  Geon‐Tae Hwang,et al.  Flash‐Induced Self‐Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester , 2017, Advanced materials.

[2]  S. Ko,et al.  Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering , 2016 .

[3]  R. Ruoff,et al.  Laser-induced phase separation of silicon carbide , 2016, Nature Communications.

[4]  B. Cho,et al.  High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. , 2016, ACS nano.

[5]  Dae Yong Park,et al.  Simultaneous Roll Transfer and Interconnection of Flexible Silicon NAND Flash Memory , 2016, Advanced materials.

[6]  S. Ko,et al.  Digital selective laser methods for nanomaterials: From synthesis to processing , 2016 .

[7]  Seungjun Kim,et al.  Skin‐Like Oxide Thin‐Film Transistors for Transparent Displays , 2016 .

[8]  S. Priya,et al.  Tailoring the Magnetoelectric Properties of Pb(Zr,Ti)O3 Film Deposited on Amorphous Metglas Foil by Laser Annealing , 2016 .

[9]  Mi Kyung Kim,et al.  Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells. , 2016, ACS nano.

[10]  S. Ko Low temperature thermal engineering of nanoparticle ink for flexible electronics applications , 2016 .

[11]  Young-Min Choi,et al.  Transversally Extended Laser Plasmonic Welding for Oxidation-Free Copper Fabrication toward High-Fidelity Optoelectronics , 2016 .

[12]  Muhammad M. Hussain,et al.  CMOS‐Technology‐Enabled Flexible and Stretchable Electronics for Internet of Everything Applications , 2016, Advanced materials.

[13]  Hyunmin Cho,et al.  Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. , 2016, ACS applied materials & interfaces.

[14]  M. Favaro,et al.  Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications , 2016 .

[15]  Bong Hoon Kim,et al.  Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. , 2016, ACS nano.

[16]  Mohamed Sultan Mohamed Ali,et al.  Micro-scale energy harvesting devices: Review of methodological performances in the last decade , 2016 .

[17]  E. Mazur,et al.  Ultrafast laser processing of materials: a review , 2015 .

[18]  S. Ko,et al.  Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction , 2015, Advanced materials.

[19]  Adnan Ali,et al.  Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review , 2015, Front. Mater..

[20]  D. Wilkinson,et al.  A review of cathode materials and structures for rechargeable lithium–air batteries , 2015 .

[21]  Muhammad Mustafa Hussain,et al.  Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics , 2015, ArXiv.

[22]  Jong-Hyun Ahn,et al.  Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome , 2015 .

[23]  I. Park,et al.  Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design. , 2015, ACS nano.

[24]  Joshua A. Spechler,et al.  Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode. , 2015, ACS applied materials & interfaces.

[25]  Geon-Tae Hwang,et al.  Self-powered flexible inorganic electronic system , 2015 .

[26]  Seung Hwan Ko,et al.  Low‐Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation , 2015, Advanced materials.

[27]  Seung Hwan Ko,et al.  All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers , 2015 .

[28]  Kyoungsik Yu,et al.  Localized Laser‐Based Photohydrothermal Synthesis of Functionalized Metal‐Oxides , 2015 .

[29]  Taesoon Park,et al.  Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates , 2015 .

[30]  Seung Hwan Ko,et al.  Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel. , 2015, Journal of nanoscience and nanotechnology.

[31]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[32]  Xiaohui Lin,et al.  Towards realizing high-throughput, roll-to-roll manufacturing of flexible electronic systems , 2014 .

[33]  Seungjun Kim,et al.  Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off , 2014, Advanced materials.

[34]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[35]  M. El‐Kady,et al.  Direct laser writing of graphene electronics. , 2014, ACS nano.

[36]  Chi Hwan Lee,et al.  Transfer printing methods for flexible thin film solar cells: basic concepts and working principles. , 2014, ACS nano.

[37]  Seung Hwan Ko,et al.  Fast Plasmonic Laser Nanowelding for a Cu‐Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics , 2014, Advanced materials.

[38]  Daeho Lee,et al.  Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. , 2014, ACS nano.

[39]  Mikko Söderlund,et al.  Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications , 2014 .

[40]  I. Choi,et al.  Laser-induced solid-phase doped graphene. , 2014, ACS nano.

[41]  Seung Hwan Ko,et al.  Digital 3D Local Growth of Iron Oxide Micro- and Nanorods by Laser-Induced Photothermal Chemical Liquid Growth , 2014 .

[42]  Costas P. Grigoropoulos,et al.  Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors , 2014, Nano Research.

[43]  Seung Jun Kim,et al.  Flexible one diode–one resistor resistive switching memory arrays on plastic substrates , 2014 .

[44]  D. Schaubroeck,et al.  Fabrication of a laser patterned flexible organic light-emitting diode on an optimized multilayered barrier. , 2014, Applied optics.

[45]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[46]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[47]  Wenjun Zhang,et al.  Selective laser sintering of TiO2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application , 2014 .

[48]  S. Y. Kim,et al.  Flexible organic light-emitting diodes using a laser lift-off method , 2014 .

[49]  Seung Hwan Ko,et al.  Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device. , 2014, ACS applied materials & interfaces.

[50]  C. Grigoropoulos,et al.  In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics. , 2014, Small.

[51]  P. K. Nayak,et al.  In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition , 2013 .

[52]  Su‐Ting Han,et al.  Towards the Development of Flexible Non‐Volatile Memories , 2013, Advanced materials.

[53]  Seok-Jin Yoon,et al.  Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process , 2013 .

[54]  Wei Gao,et al.  Direct laser-patterned micro-supercapacitors from paintable MoS2 films. , 2013, Small.

[55]  Costas P. Grigoropoulos,et al.  Rapid, One‐Step, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth , 2013 .

[56]  Chao Gao,et al.  Highly Electrically Conductive Ag‐Doped Graphene Fibers as Stretchable Conductors , 2013, Advanced materials.

[57]  S. Ko,et al.  Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. , 2013, ACS nano.

[58]  Chun-Chieh Lin,et al.  Resistive switching properties of TiO2 film for flexible non-volatile memory applications , 2013 .

[59]  Chang Liu,et al.  A review of carbon nanotube- and graphene-based flexible thin-film transistors. , 2013, Small.

[60]  M. Hersam,et al.  Inkjet Printing of High Conductivity, Flexible Graphene Patterns. , 2013, The journal of physical chemistry letters.

[61]  L. Lauhon,et al.  Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. , 2013, Chemical Society reviews.

[62]  Costas P. Grigoropoulos,et al.  Nanosecond laser ablation of silver nanoparticle film , 2013 .

[63]  Sung-Hak Cho,et al.  A study on the effect of ultrasonic vibration in nanosecond laser machining , 2012 .

[64]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[65]  Luca Maiolo,et al.  Polysilicon thin-film transistors on polymer substrates , 2012 .

[66]  J. Huskens,et al.  Fabrication of Transistors on Flexible Substrates: from Mass‐Printing to High‐Resolution Alternative Lithography Strategies , 2012, Advanced materials.

[67]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[68]  So Young Park,et al.  Laser lift-off of GaN thin film and its application to the flexible light emitting diodes , 2012, Optics & Photonics - NanoScience + Engineering.

[69]  Heung Cho Ko,et al.  Transfer of GaN LEDs From Sapphire to Flexible Substrates by Laser Lift-Off and Contact Printing , 2012, IEEE Photonics Technology Letters.

[70]  S. Ko,et al.  Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth , 2012 .

[71]  S. Ko,et al.  Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. , 2012, Nanoscale.

[72]  Seok-Jin Yoon,et al.  Fabrication of flexible device based on PAN-PZT thin films by laser lift-off process , 2012 .

[73]  C. Grigoropoulos,et al.  Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices. , 2012, ACS nano.

[74]  Seung Hwan Ko,et al.  Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning , 2012 .

[75]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[76]  Costas P. Grigoropoulos,et al.  Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics , 2012, PloS one.

[77]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[78]  S. Ko,et al.  Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network , 2012, Advanced materials.

[79]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[80]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[81]  S. Ko,et al.  One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle , 2011 .

[82]  Seungjun Kim,et al.  Flexible memristive memory array on plastic substrates. , 2011, Nano letters.

[83]  C. Grigoropoulos,et al.  Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles , 2011, Advanced materials.

[84]  M. Toney,et al.  Laser-synthesized epitaxial graphene. , 2010, ACS nano.

[85]  C. Grigoropoulos,et al.  High-throughput near-field optical nanoprocessing of solution-deposited nanoparticles. , 2010, Small.

[86]  Sung-Yool Choi,et al.  A low-temperature-grown TiO2-based device for the flexible stacked RRAM application , 2010, Nanotechnology.

[87]  W. Gesierich Diagnostic and therapeutic laser applications in pulmonary medicine – A review , 2010 .

[88]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2009, Nature nanotechnology.

[89]  C. Mayer,et al.  Direct laser patterning of soft matter: photothermal processing of supported phospholipid multilayers with nanoscale precision. , 2009, Small.

[90]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[91]  Costas P. Grigoropoulos,et al.  Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics , 2009 .

[92]  Heng Pan,et al.  Nanomaterial enabled laser transfer for organic light emitting material direct writing , 2008 .

[93]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[94]  Luca Maiolo,et al.  Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic , 2008 .

[95]  David J. Hwang,et al.  High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films , 2007 .

[96]  S. Roy Fabrication of micro- and nano-structured materials using mask-less processes , 2007 .

[97]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[98]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[99]  M. G. Kane,et al.  100‐MHz CMOS circuits directly fabricated on plastic using sequential laterally solidified silicon , 2007 .

[100]  C. Grigoropoulos,et al.  Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles , 2007 .

[101]  Costas P. Grigoropoulos,et al.  Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing , 2007 .

[102]  E. Giannelis,et al.  Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing , 2006 .

[103]  David J. Hwang,et al.  Nanosecond laser ablation of gold nanoparticle films , 2006 .

[104]  G. Galbács A Review of Applications and Experimental Improvements Related to Diode Laser Atomic Spectroscopy , 2006 .

[105]  Ivo Krejci,et al.  Indications and limitations of Er:YAG laser applications in dentistry. , 2006, American journal of dentistry.

[106]  D. Knowles,et al.  P‐59: Thin‐beam Crystallization Method for Fabrication of LTPS , 2005 .

[107]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[108]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[109]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[110]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[111]  J. Ewing Excimer laser technology development , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[112]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[113]  Paul Wickboldt,et al.  Polysilicon thin film transistors fabricated on low temperature plastic substrates , 1999 .

[114]  Koji Kawasaki,et al.  Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing , 1994 .

[115]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[116]  Daniel Sharon,et al.  Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions , 2015 .

[117]  Kwan Chu Tan,et al.  Pulsed laser deposition of Al-doped ZnO films on glass and polycarbonate , 2014 .

[118]  E. Kymakis,et al.  Laser-Assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[119]  R. Delmdahl,et al.  Large-Area Laser-Lift-Off Processing in Microelectronics , 2013 .

[120]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[121]  Costas P. Grigoropoulos,et al.  Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication , 2009 .

[122]  Kanti Jain,et al.  Design and Fabrication of Stretchable Multilayer Self-Aligned Interconnects for Flexible Electronics and Large-Area Sensor Arrays Using Excimer Laser Photoablation , 2009, IEEE Electron Device Letters.

[123]  Ian M. Hutchings,et al.  Direct Writing Technology Advances and Developments , 2008 .

[124]  T. W. Sigmon,et al.  Excimer laser crystallization and doping of silicon films on plastic substrates , 1997 .