Robin boundary value problems on arbitrary domains

We develop a theory of generalised solutions for elliptic boundary value problems subject to Robin boundary conditions on arbitrary domains, which resembles in many ways that of the Dirichlet problem. In particular, we establish Lp-Lq-estimates which turn out to be the best possible in that framework. We also discuss consequences to the spectrum of Robin boundary value problems. Finally, we apply the theory to parabolic equations.

[1]  Daniel Daners,et al.  Heat Kernel Estimates for Operators with Boundary Conditions , 2000 .

[2]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[3]  Marie-Hélène Bossel Membranes élastiquement liées inhomogènes ou sur une surface: Une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn , 1988 .

[4]  J. Thomas Beale,et al.  Scattering frequencies of resonators , 1973 .

[5]  E. N. Dancer,et al.  Domain Perturbation for Elliptic Equations Subject to Robin Boundary Conditions , 1997 .

[6]  H. Weinberger,et al.  Lower Bounds for Vibration Frequencies of Elastically Supported Membranes and Plates , 1957 .

[7]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[8]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[9]  R. Phillips,et al.  On the scattering frequencies of the laplace operator for exterior domains , 1972 .

[10]  A. F. M. Ter Elst,et al.  Elliptic operators on Lie groups , 1995 .

[11]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[12]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[13]  Derek W. Robinson,et al.  Elliptic Operators and Lie Groups , 1991 .

[14]  V. Mizel,et al.  Every superposition operator mapping one Sobolev space into another is continuous , 1979 .

[15]  Par Marie-Hélèe Bossel Elastically supported membranes inhomogeneous or on a surface: a new extension of the isoperimetric Rayleigh-Faber-Krahn , 1988 .

[16]  E. N. Dancer The effect of domain shape on the number of positive solutions of certain nonlinear equations, II , 1990 .

[17]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[18]  Wolfgang Arendt,et al.  Gaussian estimates and interpolation of the spectrum in $L^p$ , 1994, Differential and Integral Equations.

[19]  T. O’Neil Geometric Measure Theory , 2002 .

[20]  W. Ziemer Weakly differentiable functions , 1989 .

[21]  R. P. Sperb Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran , 1972 .

[22]  P. Stein On a Theorem of M. Riesz , 1933 .

[23]  N. Trudinger Linear elliptic operators with measurable coe cients , 1973 .

[24]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[25]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .