Semiconductor Equations for variable Mobilities Based on Boltzmann Statistics or Fermi-Dirac Statistics†
暂无分享,去创建一个
[1] H. Gajewski,et al. On the basic equations for carrier transport in semiconductors , 1986 .
[2] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[3] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[4] Jürgen Moser,et al. A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .
[5] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[6] M. S. Mock,et al. Analysis of mathematical models of semiconductors devices , 1983 .
[7] M. S. Mock. An Initial Value Problem from Semiconductor Device Theory , 1974 .
[8] K. Gröger. Regularitätsaussagen für Evolutionsgleichungen mit stark monotonen Operatoren , 1975 .
[9] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[10] W. V. Roosbroeck. Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .
[11] H. Gajewski,et al. On Existence, Uniqueness and Asymptotic Behavior of Solutions of the Basic Equations for Carrier Transport in Semiconductors , 1985 .
[12] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .