Parallel Edge Splatting for Scalable Dynamic Graph Visualization

We present a novel dynamic graph visualization technique based on node-link diagrams. The graphs are drawn side-byside from left to right as a sequence of narrow stripes that are placed perpendicular to the horizontal time line. The hierarchically organized vertices of the graphs are arranged on vertical, parallel lines that bound the stripes; directed edges connect these vertices from left to right. To address massive overplotting of edges in huge graphs, we employ a splatting approach that transforms the edges to a pixel-based scalar field. This field represents the edge densities in a scalable way and is depicted by non-linear color mapping. The visualization method is complemented by interaction techniques that support data exploration by aggregation, filtering, brushing, and selective data zooming. Furthermore, we formalize graph patterns so that they can be interactively highlighted on demand. A case study on software releases explores the evolution of call graphs extracted from the JUnit open source software project. In a second application, we demonstrate the scalability of our approach by applying it to a bibliography dataset containing more than 1.5 million paper titles from 60 years of research history producing a vast amount of relations between title words.

[1]  Stephan Diehl,et al.  Graphs, They Are Changing , 2002, GD.

[2]  Walter Didimo,et al.  Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations , 2010, PacificVis.

[3]  Glenford J. Myers,et al.  Structured Design , 1974, IBM Syst. J..

[4]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[5]  Christian S. Collberg,et al.  A system for graph-based visualization of the evolution of software , 2003, SoftVis '03.

[6]  Kwan-Liu Ma,et al.  code_swarm: A Design Study in Organic Software Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  D. Weiskopf Image-Based Edge Bundles: Simplified Visualization of Large Graphs , 2010 .

[8]  Robert van Liere,et al.  GraphSplatting: Visualizing Graphs as Continuous Fields , 2003, IEEE Trans. Vis. Comput. Graph..

[9]  Hong Zhou,et al.  Splatting the Lines in Parallel Coordinates , 2009, Comput. Graph. Forum.

[10]  Lucian Voinea,et al.  CVSscan: visualization of code evolution , 2005, SoftVis '05.

[11]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Ulrik Brandes,et al.  Visual Unrolling of Network Evolution and the Analysis of Dynamic Discourse† , 2003, Inf. Vis..

[13]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[14]  Matthew D. Cooper,et al.  Revealing Structure within Clustered Parallel Coordinates Displays , 2005, INFOVIS.

[15]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[16]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[17]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs , 2010, Eurographics.

[18]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[19]  Amy Ashurst Gooch,et al.  The Aesthetics of Graph Visualization , 2007, CAe.

[20]  Jarke J. van Wijk,et al.  Visual Comparison of Hierarchically Organized Data , 2008, Comput. Graph. Forum.

[21]  Daniel Weiskopf,et al.  Progressive Splatting of Continuous Scatterplots and Parallel Coordinates , 2011, Comput. Graph. Forum.

[22]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[23]  Michael Burch,et al.  TimeRadarTrees: Visualizing Dynamic Compound Digraphs , 2008, Comput. Graph. Forum.

[24]  Ayellet Tal,et al.  Online Dynamic Graph Drawing , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[26]  Haim Levkowitz,et al.  Uncovering Clusters in Crowded Parallel Coordinates Visualizations , 2004, IEEE Symposium on Information Visualization.

[27]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[28]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[29]  Michele Lanza,et al.  The evolution matrix: recovering software evolution using software visualization techniques , 2001, IWPSE '01.

[30]  Yuanzhen Li,et al.  Feature congestion: a measure of display clutter , 2005, CHI.

[31]  Michael Burch,et al.  Visualizing the Evolution of Compound Digraphs with TimeArcTrees , 2009, Comput. Graph. Forum.

[32]  E. Wegman,et al.  Construction of line densities for parallel coordinate plots , 1992 .

[33]  Daniel Weiskopf,et al.  Continuous Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[34]  Charl P. Botha,et al.  Extensions of Parallel Coordinates for Interactive Exploration of Large Multi-Timepoint Data Sets , 2008, IEEE Transactions on Visualization and Computer Graphics.

[35]  Michael Burch,et al.  Towards an Aesthetic Dimensions Framework for Dynamic Graph Visualisations , 2009, 2009 13th International Conference Information Visualisation.

[36]  Edward J. Wegman,et al.  High Dimensional Clustering Using Parallel Coordinates and the Grand Tour , 1997 .

[37]  Christoph Wysseier,et al.  Visualizing live software systems in 3D , 2006, SoftVis '06.

[38]  Michael Ley,et al.  DBLP - Some Lessons Learned , 2009, Proc. VLDB Endow..

[39]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[40]  David Feng,et al.  Matching Visual Saliency to Confidence in Plots of Uncertain Data , 2010, IEEE Transactions on Visualization and Computer Graphics.