STABILITY IN A NONLINEAR POPULATION MATURATION MODEL

We consider models for population structured by maturation/maturation speed proposed by Rotenberg. It is a variant of transport equations for age-structured populations which presents particularly interesting mathematical difficulties. It allows one to introduce more stochasticity in the birth process and in the aging phenomena. We present a new method for studying the time asymptotics which is also illustrated on the simpler McKendrick–Von Foerster model. The nonlinear variants of these models are shown to exhibit either nonlinear stability or periodic solutions depending on the datum.

[1]  M. Rockstein,et al.  Biology of Aging , 1958 .

[2]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[3]  S. I. Rubinow,et al.  A theory for the age and generation time distribution of a microbial population , 1974 .

[4]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[5]  A. Bensoussan,et al.  Boundary Layers and Homogenization of Transport Processes , 1979 .

[6]  Pierangelo Marcati Asymptotic Behavior in Age-Dependent Population Dynamics with Hereditary Renewal Law , 1981 .

[7]  M. Chipot On the equations of age-dependent population dynamics , 1983 .

[8]  M. Rotenberg Transport theory for growing cell populations. , 1983, Journal of theoretical biology.

[9]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[10]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[11]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[12]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[13]  J. Cushing An introduction to structured population dynamics , 1987 .

[14]  Richard H. Elderkin Theory of nonlinear age-dependent population dynamics (Monographs and textbooks in pure and applied mathematics, vol. 89): By G.F. Webb. Dekker, New York (1985). vi+294 pp. $65.00 , 1987 .

[15]  S. Cummings,et al.  Biology of Aging , 2006, Reihe der Villa Vigoni.

[16]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .

[17]  Glenn F. Webb,et al.  A nonlinear age and maturity structured model of population dynamics. I. Basic theory , 2000 .

[18]  Glenn F. Webb,et al.  A Nonlinear Age and Maturity Structured Model of Population Dynamics: II. Chaos , 2000 .

[19]  L Edelstein-Keshet,et al.  Modelling perspectives on aging: can mathematics help us stay young? , 2001, Journal of theoretical biology.

[20]  Hunter B. Fraser,et al.  Explaining mortality rate plateaus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M Gyllenberg,et al.  Steady-state analysis of structured population models. , 2003, Theoretical population biology.