Pulsed-laser hyperdoping and surface texturing for photovoltaics

We describe two ways in which pulsed lasers can be used to increase efficiency in photovoltaic devices. First, pulsed-laser hyperdoping can introduce dopants into a semiconductor at non-equilibrium concentrations, which creates an intermediate band in the bandgap of the material and modifies the absorption coefficient. Second, pulsed-laser irradiation can enhance geometric light trapping by increasing surface roughness. Hyperdoping in silicon enables absorption of photons to wavelengths of at least 2.5 μm, while texturing enhances the absorptance to near unity at all absorbing wavelengths. This article reviews both effects and comments on outstanding questions and challenges in applying each to increasing the efficiency of photovoltaic devices.

[1]  Mengyan Shen,et al.  Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. , 2005, Optics letters.

[2]  S. K. Sundaram,et al.  Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses , 2002, Nature materials.

[3]  R. Hall,et al.  Sulfur in silicon , 1959 .

[4]  Taegon Kim,et al.  Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing , 2010 .

[5]  R. Yen,et al.  Picosecond laser‐induced melting and resolidification morphology on Si , 1979 .

[6]  G. Schwuttke,et al.  Silicon diodes made by laser irradiation , 1968 .

[7]  Eric Mazur,et al.  Silicon Surface Morphologies after Femtosecond Laser Irradiation , 2006 .

[8]  Jingtao Zhu,et al.  Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon , 2008 .

[9]  P. Carey,et al.  Fabrication of submicrometer MOSFET's using gas immersion laser doping (GILD) , 1986, IEEE Electron Device Letters.

[10]  Zanatta,et al.  Absorption edge, band tails, and disorder of amorphous semiconductors. , 1996, Physical review. B, Condensed matter.

[11]  Michael O. Thompson,et al.  Complete experimental test of kinetic models for rapid alloy solidification , 2000 .

[12]  Mool C. Gupta,et al.  Optical properties of silicon light trapping structures for photovoltaics , 2010 .

[13]  V. Emel’yanov,et al.  Defect capture under rapid solidification of the melt induced by the action of femtosecond laser pulses and formation of periodic surface structures on a semiconductor surface , 2002 .

[14]  M. Wolf,et al.  Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth's Surface Operation , 1960, Proceedings of the IRE.

[15]  E. Mazur,et al.  Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation , 2004 .

[16]  White,et al.  Solute trapping in silicon by lateral motion of {111} ledges. , 1986, Physical review letters.

[17]  E. Mazur,et al.  Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses , 2001, CLEO 2001.

[18]  Eric Mazur,et al.  Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon , 2004 .

[19]  Taeseok Kim,et al.  Composition dependence of Schottky barrier heights and bandgap energies of GaNxAs1−x synthesized by ion implantation and pulsed-laser melting , 2008 .

[20]  F. A. Kröger,et al.  Defect pairing diffusion, and solubility studies in selenium‐doped silicon , 1978 .

[21]  Eric Mazur,et al.  Chalcogen doping of silicon via intense femtosecond-laser irradiation , 2007 .

[22]  John E. Sipe,et al.  Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium , 1984 .

[23]  Martin A. Green,et al.  Efficiency improvements of silicon solar cells by the impurity photovoltaic effect , 1994 .

[24]  Eric Mazur,et al.  Femtosecond laser-induced formation of spikes on silicon , 2000 .

[25]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[26]  Antonio Luque,et al.  Intermediate bands versus levels in non-radiative recombination , 2006 .

[27]  P. Landsberg,et al.  Recombination in semiconductors , 2003, Nature.

[28]  Eric Mazur,et al.  Insulator-to-metal transition in sulfur-doped silicon. , 2011, Physical review letters.

[29]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[30]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[31]  Jeff F. Young,et al.  Laser-induced periodic surface structure. I. Theory , 1983 .

[32]  Eric Mazur,et al.  Role of the Background Gas in the Morphology and Optical Properties of Laser-Microstructured Silicon , 2005 .

[33]  M. Scarpulla,et al.  Diluted ZnMnTe oxide: a multi‐band semiconductor for high efficiency solar cells , 2004 .

[34]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[35]  Antonio Luque,et al.  The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept , 2010, Advanced materials.

[36]  Michael O. Thompson,et al.  Experimental test of morphological stability theory for a planar interface during rapid solidification , 1998 .

[37]  Jeff F. Young,et al.  Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass , 1983 .

[38]  E. Janzén,et al.  High-resolution studies of sulfur- and selenium-related donor centers in silicon , 1984 .

[39]  P. Carey,et al.  Ultra-shallow high-concentration boron profiles for CMOS processing , 1985, IEEE Electron Device Letters.

[40]  S. R. Wilson,et al.  Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon , 1980 .

[41]  I Zergioti,et al.  Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties. , 2008, Applied optics.

[42]  J. Vardaxoglou,et al.  Conditions for femtosecond laser melting of silicon , 2007 .

[43]  E. Kaxiras,et al.  Sulfur point defects in crystalline and amorphous silicon , 2004 .

[44]  Eric Mazur,et al.  Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring. , 2006, Applied optics.

[45]  H. Kurz,et al.  Time‐resolved temperature measurement of picosecond laser irradiated silicon , 1983 .

[46]  Mool C. Gupta,et al.  Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures , 2011 .

[47]  I. Umezu,et al.  Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting , 2010 .

[48]  Michael O. Thompson,et al.  Silicon Melt, Regrowth, and Amorphization Velocities During Pulsed Laser Irradiation , 1983 .

[49]  E. Janzén,et al.  Diffusion of tellurium dopant in silicon , 1982 .

[50]  K. Sokolowski-Tinten,et al.  Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy , 1999 .

[51]  W. Lüthy,et al.  Properties of laser‐assisted doping in silicon , 1978 .

[52]  G. A. Thomas,et al.  Optical study of interacting donors in semiconductors , 1981 .

[53]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[54]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[55]  Mengyan Shen,et al.  Femtosecond Laser-Induced Formation Of Submicrometer Spikes On Silicon In Water , 2004 .

[56]  Ph. Delaporte,et al.  Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication , 2008 .

[57]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[58]  P. Parvin,et al.  Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere , 2008 .

[59]  Eric Mazur,et al.  The role of diffusion in broadband infrared absorption in chalcogen-doped silicon , 2009 .

[60]  Michael J. Aziz,et al.  Solute Trapping of Group III, IV, and V Elements in Silicon by an Aperiodic Stepwise Growth Mechanism , 1994 .

[61]  Eric Mazur,et al.  Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[62]  D. K. Schroder,et al.  Free carrier absorption in silicon , 1978 .

[63]  M. Meunier,et al.  Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation , 2006 .

[64]  P. Siffert,et al.  Silicon solar cells realized by laser induced diffusion of vacuum‐deposited dopants , 1981 .

[65]  Scott Ward,et al.  Nanostructured black silicon and the optical reflectance of graded-density surfaces , 2009 .

[66]  A. Luque,et al.  Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material , 2009 .