A comparison of field assisted hot pressing and hot isostatic pressing for gas atomized Ti–22Al–26Nb(at.%) and Ti–22Al–26Nb–5B(at.%) powders

[1]  J. Torralba,et al.  Microstructural Development and Mechanical Properties of PM Ti–45Al–2Nb–2Mn–0.8 vol.%TiB2 Processed by Field Assisted Hot Pressing , 2014 .

[2]  E. Olevsky,et al.  Electric pulse consolidation: an alternative to spark plasma sintering , 2014, Journal of Materials Science.

[3]  T. Voisin,et al.  Refinement of lamellar microstructures by boron incorporation in GE-TiAl alloys processed by Spark Plasma Sintering , 2013 .

[4]  H. Clemens,et al.  Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys , 2013 .

[5]  Marc Thomas,et al.  Temperature control during Spark Plasma Sintering and application to up-scaling and complex shaping , 2013 .

[6]  Norman M. Wereley,et al.  Advances in gamma titanium aluminides and their manufacturing techniques , 2012 .

[7]  H. Clemens,et al.  Light-Weight Intermetallic Titanium Aluminides – Status of Research and Development , 2011 .

[8]  Wei Chen,et al.  The 455 °C tensile and fatigue behavior of boron-modified Ti-6Al-2Sn-4Zr-2Mo-0.1Si(wt.%) , 2010 .

[9]  E. A. Payzant,et al.  The effect of processing on the 455 °C tensile and fatigue behavior of boron-modified Ti-6Al-4V , 2010 .

[10]  Y. Sakka,et al.  Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008 , 2009, Science and technology of advanced materials.

[11]  Wei Chen,et al.  The Elevated-Temperature Creep Behavior of Boron-Modified Ti-6Al-4V Alloys , 2009 .

[12]  C. Boehlert,et al.  Effect of Boron on the Elevated-Temperature Tensile and Creep Behavior of Cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Weight Percent) , 2009 .

[13]  Wei Chen,et al.  The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V(wt.%) castings , 2008 .

[14]  C. Boehlert,et al.  Microstructure, Tensile, and Creep Behavior of Boron-Modified Ti-15Al-33Nb (at.%) , 2008 .

[15]  A. Couret,et al.  Application of Spark Plasma Sintering to Titanium Aluminide Alloys , 2007 .

[16]  C. Boehlert,et al.  Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct) , 2007 .

[17]  D. Trinkle Lattice and elastic constants of titanium-niobium monoborides containing aluminum and vanadium , 2006, cond-mat/0607398.

[18]  Daniel B. Miracle,et al.  In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy , 2006 .

[19]  C. Cowen,et al.  Microstructure, creep, and tensile behaviour of a Ti–15Al–33Nb (at.%) beta+orthorhombic alloy , 2006 .

[20]  D. Miracle,et al.  Grain refinement of cast titanium alloys via trace boron addition , 2005 .

[21]  S. Yang,et al.  Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti-22Al-27Nb composites , 2004 .

[22]  K. Maruyama,et al.  Microstructural Characteristics and Creep Behavior of 45XD TiAl Alloys , 2004 .

[23]  S. Nam,et al.  The role of TiB particulate reinforcement in Ti2AlNb based composite under high cycle fatigue , 2003 .

[24]  S. Emura,et al.  Property Enhancement of Orthorhombic Ti2AlNb-Based Intermetallic Alloys , 2003 .

[25]  B. Kong,et al.  Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy , 2003 .

[26]  S. Gorsse,et al.  Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements , 2003 .

[27]  F. Tang,et al.  Effect of boron microalloying on microstructure, tensile properties and creep behavior of Ti–22Al–20Nb–2W alloy , 2001 .

[28]  C. Boehlert Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys , 2001 .

[29]  P. R. Smith,et al.  Microstructural evolution in wire-drawn Ti-22Al-26Nb powder , 2000 .

[30]  M. Oehring,et al.  Recent progress in the development of gamma titanium aluminide alloys , 2000 .

[31]  Edward A. Loria,et al.  Gamma titanium aluminides as prospective structural materials , 2000 .

[32]  T. K. Nandy,et al.  Creep of the orthorhombic phase based on the intermetallic Ti2AlNb , 2000 .

[33]  P. R. Smith,et al.  Review A P/M approach for the fabrication of an orthorhombic titanium aluminide for MMC applications , 2000 .

[34]  D. Dimiduk,et al.  Phenomenological observations of lamellar orientation effects on the creep behavior of Ti-48At.%Al PST crystals , 2000 .

[35]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[36]  C. Boehlert,et al.  Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys , 1999 .

[37]  B. Majumdar,et al.  Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys , 1999 .

[38]  A. Rosenberger,et al.  Tape cast second generation orthorhombic-based titanium aluminide alloys for MMC applications , 1999 .

[39]  R. Mishra,et al.  Creep behaviour of an orthorhombic phase in a TiAlNb alloy , 1993 .

[40]  A. Gogia,et al.  The effect of heat treatment and niobium content on the room temperature tensile properties and microstructure of Ti3AlNb alloys , 1992 .

[41]  W. Boettinger,et al.  Coherent precipitates in the b.c.c./orthorhombic two-phase field of the TiAlNb system , 1991 .

[42]  R. Mishra,et al.  Microstructure and steady state creep in Ti-24Al-11Nb , 1990 .

[43]  C. H. Ward,et al.  Microstructures and phase relationships in the Ti3Al + Nb system , 1989 .

[44]  G. Malakondaiah,et al.  Creep of Alpha-Titanium at low stresses , 1981 .

[45]  M. Mendiratta,et al.  Steady-state creep behaviour of Ti3Al-base intermetallics , 1980 .