Ceramic Yb: YAG microchip laser
暂无分享,去创建一个
Richard L. Gentilman | Jean C. Huie | R. A. Ackerman | Eric P. Ostby | Richard A. Ackerman | E. Ostby | R. Gentilman
[1] M. Dubinskii,et al. Comparison of laser, optical and thermal properties of ceramic laser gain materials with single crystal materials , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..
[2] Deyuan Shen,et al. Diode-pumped Yb:Y2O3 ceramic laser , 2002, SPIE/COS Photonics Asia.
[3] Ken-ichi Ueda,et al. Yb3+-doped Y3Al5O12 ceramics – A new solid-state laser material , 2003 .
[4] Ken-ichi Ueda,et al. Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser , 2000 .
[5] V V Ter-Mikirtychev,et al. Directly Single-Diode-Pumped Continuous-Wave Yb(3+):YAG Laser Tunable in the 1047-1051-nm Wavelength Range. , 2000, Applied optics.
[6] Akio Ikesue,et al. Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers. , 1995 .
[7] Sang-Ho Lee,et al. Processing technology, laser, optical and thermal properties of ceramic laser gain materials , 2005, SPIE Defense + Commercial Sensing.
[8] T Y Fan,et al. Room-temperature 50-mJ / pulse side-diode-pumped Yb:YAG laser. , 1995, Optics letters.
[9] R L Byer,et al. Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers. , 1997, Applied optics.
[10] C. Greskovich,et al. Polycrystalline ceramic lasers , 1973 .
[11] Pavel P. Pashinin,et al. Changes in the profile and state of polarisation of a short light pulse (λ ~ 1.06 μm) during propagation in a YAG : Cr4+ crystal , 1994 .
[12] Xiaolei Zhu,et al. Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications. , 2005, Optics express.
[13] David S. Sumida,et al. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers , 1997 .
[14] H. Yagi,et al. Study on the Diode-pumped Yb:Y 2 O 3 Ceramic Laser , 2005 .
[15] D. Tang,et al. Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser. , 2004, Optics letters.
[16] David M. Filgas,et al. Short pulse and high repetition rate Q-switched Yb:YAG microchip laser , 2005, SPIE LASE.
[17] Richard L. Gentilman,et al. Characterization of transparent polycrystalline yttrium aluminum garnet (YAG) fabricated from nano-powder , 2005, SPIE Defense + Commercial Sensing.
[18] Yoichi Sato,et al. Thermal-birefringence-induced depolarization in Nd:YAG ceramics. , 2002, Optics letters.
[19] D. Findlay,et al. The measurement of internal losses in 4-level lasers , 1966 .
[20] T. Fan,et al. Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.
[21] Shunsuke Hosokawa,et al. Lu2O3:Yb3+ ceramics – a novel gain material for high‐power solid‐state lasers , 2005 .
[22] S. S. Melnyk,et al. The Q-switched Nd : YAG and Yb : YAG microchip lasers optimization and comparative analysis , 2004 .
[23] Tso Yee Fan,et al. 165-W cryogenically cooled Yb:YAG laser. , 2004, Optics letters.
[24] K. Ueda,et al. Spectral characteristics of a Yb-doped Y2O3 ceramic laser , 2004 .
[25] T. Fan,et al. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. , 1994, Optics letters.
[26] E. CarnallJr.,et al. Optical Studies on Hot-Pressed Polycrystalline CaF2 With Clean Grain Boundaries , 1966 .
[27] K Ueda,et al. Passively Q-switched Yb:Y(2)O(3 )ceramic laser with a GaAs output coupler. , 2004, Optics express.