A metamorphic devolatilization model for the granitoid-hosted Wulong lode gold deposit, Liaodong Peninsula, eastern North China Craton: Evidence from geology, fluid inclusions, and O-Sr-Li isotopes

[1]  W. Pohl Formation of gold deposits , 2022, Applied Earth Science.

[2]  R. Goldfarb,et al.  Orogenic gold: is a genetic association with magmatism realistic? , 2022, Mineralium Deposita.

[3]  Bin Chen,et al.  A TRIASSIC OROGENIC GOLD MINERALIZATION EVENT IN THE PALEOPROTEROZOIC METAMORPHIC ROCKS: EVIDENCE FROM TWO TYPES OF RUTILE IN THE BAIYUN GOLD DEPOSIT, LIAODONG PENINSULA, NORTH CHINA CRATON , 2022, Economic Geology.

[4]  Bin Chen,et al.  Lithium isotopic behaviour during high-temperature fluid-rock reactions of metapelites (>200 °C): A case study from the Baiyun orogenic gold deposit, Liaodong Peninsula, North China Craton , 2022, Chemical Geology.

[5]  P. Shen,et al.  Hydrothermal apatite record of ore-forming processes in the Hatu orogenic gold deposit, West Junggar, Northwest China , 2022, Contributions to Mineralogy and Petrology.

[6]  Bin Chen,et al.  A metamorphic devolatilization model for the genesis of the Baiyun gold deposit in the North China Craton: A novel Fe-S isotopes perspective , 2022, Gondwana Research.

[7]  Bin Chen,et al.  Geochemical and Sr–Nd–Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization , 2021, Contributions to Mineralogy and Petrology.

[8]  Jin-Hui Yang,et al.  Gold mobilization during prograde metamorphism of clastic sedimentary rocks: An example from the Liaohe Group in the Jiao–Liao–Ji Belt, North China Craton , 2021, Ore Geology Reviews.

[9]  D. Groves,et al.  Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity , 2021, Earth-Science Reviews.

[10]  M. Leybourne,et al.  Lithium isotopes at gold deposits: Insights from the giant Kirkland Lake Gold Deposit, Canada , 2021, Precambrian Research.

[11]  O. Nadeau,et al.  Inherited source affinity of Li and Hf isotopes for porphyry copper deposits from subduction and collisional settings , 2021 .

[12]  Bin Chen,et al.  Lithium isotopic systematics of ore-forming fluid in the orogenic gold deposits, Jiaodong Peninsula (East China): Implications for ore-forming mechanism , 2021 .

[13]  Guang Zhu,et al.  Crustal deformation and dynamics of Early Cretaceous in the North China Craton , 2021, Science China Earth Sciences.

[14]  Yue Zhao,et al.  Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan, China , 2021, Ore Geology Reviews.

[15]  M. Leybourne,et al.  Lithium isotopes and Cu-Au concentrations in hydrothermal alterations from Solfatara Volcano, Campi Flegrei caldera complex, and La Fossa volcano, Vulcano Island, Italy: Insights into epithermal ore forming environments , 2021 .

[16]  Bin Chen,et al.  Iron isotope fractionation in reduced hydrothermal gold deposits: A case study of the Wulong gold deposit, Liaodong Peninsula, East China , 2021, American Mineralogist.

[17]  Bin Chen,et al.  Genesis of the Xinfang Gold Deposit, Liaodong Peninsula: Insights from Fluid Inclusions and S-Sr Isotopic Constraints , 2021, Journal of Earth Science.

[18]  L. Diamond,et al.  Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion , 2020, Minerals.

[19]  R. Romer,et al.  Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites , 2020 .

[20]  Bin Chen,et al.  Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization , 2020, Chemical Geology.

[21]  F. Molnár,et al.  Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks , 2020, Geology.

[22]  Jin-Hui Yang,et al.  The 127 Ma gold mineralization in the Wulong deposit, Liaodong Peninsula, China: Constraints from molybdenite Re-Os, monazite U-Th-Pb, and zircon U-Pb geochronology , 2020, Ore Geology Reviews.

[23]  Junlai Liu,et al.  Inhomogeneous thinning of a cratonic lithospheric keel by tectonic extension: The Early Cretaceous Jiaodong Peninsula–Liaodong Peninsula extensional provinces, eastern North China craton , 2020 .

[24]  Renping Han,et al.  Genesis of the Wulong gold deposit, Liaoning Province, NE China: Constrains from noble gases, radiogenic and stable isotope studies , 2020 .

[25]  Guorui Zhang,et al.  New constraints on the genesis and geodynamic setting of the Wulong gold deposit, Liaodong Peninsula, northeast China: evidence from geology, geochemistry, fluid inclusions, and C–H–O–S–Pb isotopes , 2020 .

[26]  Gongwen Wang,et al.  Metallogenic model of the Wulong gold district, China, and associated assessment of exploration criteria based on multi-scale geoscience datasets , 2019, Ore Geology Reviews.

[27]  L. Yang,et al.  Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China , 2019, Mineralium Deposita.

[28]  B. Frost,et al.  Essentials of Igneous and Metamorphic Petrology , 2019 .

[29]  D. Groves,et al.  A holistic model for the origin of orogenic gold deposits and its implications for exploration , 2019, Mineralium Deposita.

[30]  Lejun Zhang,et al.  Formation of the Wulong gold deposit, Liaodong gold Province, NE China: Constraints from zircon U–Pb age, sericite Ar–Ar age, and H–O–S–He isotopes , 2019, Ore Geology Reviews.

[31]  A. Audétat,et al.  Abundances of S, Ga, Ge, Cd, In, Tl and 32 other major to trace elements in high-temperature (350–700 °C) magmatic-hydrothermal fluids , 2019, Ore Geology Reviews.

[32]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[33]  S. Dong,et al.  The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny” , 2018, Science China Earth Sciences.

[34]  Y. Liu,et al.  Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites , 2018, Geochimica et Cosmochimica Acta.

[35]  H. Frimmel,et al.  Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations , 2018, Ore Geology Reviews.

[36]  Guang Zhu,et al.  Structural processes and dike emplacement mechanism in the Wulong gold field, eastern Liaoning , 2018, Chinese Science Bulletin.

[37]  Guang Zhu,et al.  Strike‐Slip Motion Within the Yalu River Fault Zone, NE Asia: The Development of a Shear Continental Margin , 2018, Tectonics.

[38]  Bin Chen,et al.  Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization , 2018 .

[39]  Yang Liu,et al.  Ore genesis of the Xiadian gold deposit, Jiaodong Peninsula, East China: Information from fluid inclusions and mineralization , 2018 .

[40]  Zhuang Li,et al.  The Liaohe Group: An insight into the Paleoproterozoic tectonic evolution of the Jiao–Liao–Ji Belt, North China Craton , 2018, Precambrian Research.

[41]  Guang Zhu,et al.  Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone , 2018, Science China Earth Sciences.

[42]  M. Dosbaba,et al.  Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe , 2017 .

[43]  F. Stuart,et al.  Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong province: Evidence for a mantle source of gold , 2017 .

[44]  John F. Casey,et al.  Lithium isotope fractionation during incongruent melting: Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China , 2016 .

[45]  G. Beaudoin,et al.  Fluid mixing in orogenic gold deposits: Evidence from the H-O-Sr isotope composition of the Val-d'Or vein field (Abitibi, Canada) , 2016 .

[46]  P. Tomascak,et al.  Advances in Lithium Isotope Geochemistry , 2015 .

[47]  R. Rudnick,et al.  New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature , 2015 .

[48]  D. Groves,et al.  Orogenic gold: Common or evolving fluid and metal sources through time , 2015 .

[49]  R. Millot,et al.  The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas , 2015 .

[50]  Yue Zhao,et al.  Lithium isotope traces magmatic fluid in a seafloor hydrothermal system , 2015, Scientific Reports.

[51]  D. Craw,et al.  Metabasalts as sources of metals in orogenic gold deposits , 2015, Mineralium Deposita.

[52]  A. Gysi ORE DEPOSIT GEOLOGY , 2014 .

[53]  D. Bersani,et al.  Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits , 2014 .

[54]  Yue Zhao,et al.  Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization , 2014 .

[55]  A. Tomkins On the source of orogenic gold , 2013 .

[56]  Guochun Zhao Precambrian Evolution of the North China Craton , 2013 .

[57]  T. Mernagh,et al.  Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China , 2013 .

[58]  M. Santosh,et al.  Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China , 2013 .

[59]  Y. Nishio,et al.  Lithium-strontium isotope and heavy metal content of fluid inclusions and origin of ore-forming fluid responsible for tungsten mineralization at Takatori mine, Japan , 2013 .

[60]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[61]  San-zhong Li,et al.  Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton , 2012 .

[62]  P. Vasconcelos,et al.  Giant Mesozoic gold provinces related to the destruction of the North China craton , 2012 .

[63]  T. Elliott,et al.  Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA , 2012 .

[64]  W. McDonough,et al.  Mineral-fluid partitioning of lithium and implications for slab-mantle interaction , 2011 .

[65]  W. McDonough,et al.  A lithium isotopic study of sub-greenschist to greenschist facies metamorphism in an accretionary prism, New Zealand , 2011 .

[66]  R. Powell,et al.  Formation of gold deposits: a metamorphic devolatilization model , 2010 .

[67]  R. Korsch,et al.  Crustal-Scale Fluid Pathways and Source Rocks in the Victorian Gold Province, Australia: Insights from Deep Seismic Reflection Profiles , 2010 .

[68]  A. Tomkins Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis , 2010 .

[69]  A. Williams-Jones,et al.  Gold in Solution , 2009 .

[70]  J. Götze,et al.  Chemistry, textures and physical properties of quartz – geological interpretation and technical application , 2009, Mineralogical Magazine.

[71]  S. Brantley,et al.  Exploration potential of Cu isotope fractionation in porphyry copper deposits , 2009 .

[72]  Xiaoyue Du,et al.  Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb–Zn–Ag–Au orefield, Northeastern China , 2009 .

[73]  F. Pirajno,et al.  Intraplate magmatism in Central Asia and China and associated metallogeny , 2009 .

[74]  Guang Zhu,et al.  Syn-collisional transform faulting of the Tan-Lu fault zone, East China , 2009 .

[75]  Changqing Zhang,et al.  The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D–O–C–S isotope systematics , 2008 .

[76]  W. McDonough,et al.  Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine , 2007 .

[77]  A. Meixner,et al.  Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study , 2007 .

[78]  W. McDonough,et al.  Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota , 2006 .

[79]  R. Powell,et al.  Devolatilization of metabasic rocks during greenschist–amphibolite facies metamorphism , 2006 .

[80]  Changqian Ma,et al.  Geochronology of the Pengjiakuang and Rushan gold deposits, Eastern Jiaodong Gold Province, Northeastern China: Implications for regional mineralization and geodynamic setting , 2006 .

[81]  W. McDonough,et al.  Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite , 2006 .

[82]  S. Wilde,et al.  Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China , 2005 .

[83]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[84]  S. Wells,et al.  Li + ion motion in quartz and β-eucryptite studied by dielectric spectroscopy and atomistic simulations , 2004 .

[85]  P. Monié,et al.  Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north‐east China) , 2004 .

[86]  Jin-Hui Yang,et al.  Geochemical and Sr–Nd–Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle , 2004 .

[87]  Cong-Qiang Liu,et al.  Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North China : Implication for the age and genesis of a gold deposit , 2003 .

[88]  W. McDonough,et al.  Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust , 2003 .

[89]  D. Groves,et al.  Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China , 2002 .

[90]  P. Bons The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures , 2001 .

[91]  D. Groves,et al.  Orogenic gold and geologic time: a global synthesis , 2001 .

[92]  D. Günther,et al.  Causes for Large-Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia , 2000 .

[93]  T. McCuaig,et al.  P—T—t—deformation—fluid characteristics of lode gold deposits: evidence from alteration systematics , 1998 .

[94]  D. Groves,et al.  Late-Archean granitoid-hosted lode-gold deposits, Yilgarn Craton, Western Australia: Deposit characteristics, crustal architecture and implications for ore genesis , 1998 .

[95]  William E Seyfried,et al.  Trace Element Mobility and Lithium Isotope Exchange During Hydrothermal Alteration of Seafloor Weathered Basalt: An Experimental Study at 350°C, 500 Bars , 1998 .

[96]  D. Groves,et al.  Archean lode-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems , 1996 .

[97]  R. Armstrong,et al.  Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the paleoproterozoic kuandian complex, the eastern liaoning province, china , 1993 .

[98]  R. Bodnar Revised equation and table for determining the freezing point depression of H2O-Nacl solutions , 1993 .

[99]  M. Thirlwall Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis , 1991 .

[100]  E. R. Oxburgh,et al.  Helium, volatile fluxes and the development of continental crust , 1988 .

[101]  François Robert,et al.  High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits , 1988 .

[102]  P. Collins Gas hydrates in CO 2 -bearing fluid inclusions and the use of freezing data for estimation of salinity , 1979 .

[103]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[104]  H. Taylor The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition , 1974 .

[105]  R. Clayton,et al.  Oxygen isotope exchange between quartz and water , 1972 .

[106]  J. Lowell,et al.  Lateral and vertical alteration-mineralization zoning in porphyry ore deposits , 1970 .

[107]  Qiang Wang,et al.  Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet , 2020 .

[108]  D. Groves,et al.  Regional structural control on the distribution of world‐class gold deposits: An overview from the Giant Jiaodong Gold Province, China , 2019 .

[109]  Wang Yongbin,et al.  The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province , 2019, Acta Petrologica Sinica.

[110]  R. Rudnick,et al.  Lithium Isotope Geochemistry , 2017 .

[111]  R. Sillitoe Porphyry Copper Systems , 2010 .

[112]  T. Kusky,et al.  Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate , 2007 .

[113]  San-zhong Li,et al.  Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints , 2006 .

[114]  R. Seal Sulfur Isotope Geochemistry of Sulfide Minerals , 2006 .

[115]  A. Meixner,et al.  Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids , 2006 .

[116]  E. Schauble Applying Stable Isotope Fractionation Theory to New Systems , 2004 .

[117]  J. Ferry Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones-Reply to Hanson , 1995 .