Natural highways for end-of-life solutions in the LEO region

We present the main findings of a dynamical mapping performed in the Low Earth Orbit region. The results were obtained by propagating an extended grid of initial conditions, considering two different epochs and area-to-mass ratios, by means of a singly averaged numerical propagator. It turns out that dynamical resonances associated with high-degree geopotential harmonics, lunisolar perturbations and Solar radiation pressure can open natural deorbiting highways. For area-to-mass ratios typical of the orbiting intact objects, these corridors can be exploited only in combination with the action exerted by the atmospheric drag. For satellites equipped with an area augmentation device, we show the boundary of application of the drag, and where the Solar radiation pressure can be exploited.

[1]  S. Hughes,et al.  Earth satellite orbits with resonant lunisolar perturbations I. Resonances dependent only on inclination , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Stijn Lemmens,et al.  Status of the Space Environment: Current Level of Adherence to the Space Debris Mitigation Policy , 2017 .

[3]  A. Celletti,et al.  Dynamical investigation of minor resonances for space debris , 2015, 1504.05527.

[4]  G. Valsecchi,et al.  LEO mapping for passive dynamical disposal , 2017 .

[5]  Alessandro Rossi,et al.  Analysis of the consequences of fragmentations in low and geostationary orbits , 2016 .

[6]  J. Peláez,et al.  DROMO propagator revisited , 2013 .

[7]  G. B. Valsecchi,et al.  Solar radiation pressure resonances in Low Earth Orbits , 2017, 1709.09895.

[8]  C. Colombo,et al.  End-of-life disposal of geosynchronous satellites , 2017 .

[9]  Holger Krag,et al.  SENSITIVITY OF THE SPACE DEBRIS ENVIRONMENT TO LARGE CONSTELLATIONS AND SMALL SATELLITES , 2017 .

[10]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[11]  A. Rossi,et al.  Long Term Evolution of Earth Orbiting Debris , 1997 .

[12]  Sławomir Breiter,et al.  Lunisolar Resonances Revisited , 2001 .

[13]  S. Hughes Satellite orbits perturbed by direct solar radiation pressure: General expansion of the disturbing function , 1977 .

[14]  S. Breiter Lunisolar Apsidal Resonances at low Satellite Orbits , 1999 .

[15]  G. Voyatzis,et al.  Dynamical lifetime survey of geostationary transfer orbits , 2018, Celestial Mechanics and Dynamical Astronomy.

[16]  C. Colombo,et al.  Analysis of Orbit Stability in the Geosynchronous Region for End-Of-life Disposal , 2017 .

[17]  K. Howell,et al.  Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni- solar perturbations , 1997 .

[18]  G. Voyatzis,et al.  CARTOGRAPHIC STUDY OF THE MEO PHASE SPACE FOR PASSIVE DEBRIS REMOVAL , 2017 .

[19]  Alessandro Rossi,et al.  Chaos in navigation satellite orbits caused by the perturbed motion of the Moon , 2015, 1503.02581.

[20]  Alessandro Rossi,et al.  The New Space Debris Mitigation (SDM 4.0) Long Term Evolution Code , 2009 .

[21]  G. E. Cook Luni-Solar Perturbations of the Orbit of an Earth Satellite , 1961 .

[22]  G. Voyatzis,et al.  Dynamical cartography of Earth satellite orbits , 2019, Advances in Space Research.

[23]  Alessandro Rossi,et al.  A numerical investigation on the eccentricity growth of GNSS disposal orbits , 2016 .

[24]  R. H. Merson The Motion of a Satellite in an Axi-symmetric Gravitational Field , 1937 .