Enhancing a Near-Term Quantum Accelerator's Instruction Set Architecture for Materials Science Applications

Quantum computers with tens to hundreds of noisy qubits are being developed today. To be useful for real-world applications, we believe that these near-term systems cannot simply be scaled-down non-error-corrected versions of future fault-tolerant large-scale quantum computers. These near-term systems require specific architecture and design attributes to realize their full potential. To efficiently execute an algorithm, the quantum coprocessor must be designed to scale with respect to qubit number and to maximize useful computation within the qubits’ decoherence bounds. In this work, we employ an application-system-qubit co-design methodology to architect a near-term quantum coprocessor. To support algorithms from the real-world application area of simulating the quantum dynamics of a material system, we design a (parameterized) arbitrary single-qubit rotation instruction and a two-qubit entangling controlled-Z instruction. We introduce dynamic gate set and paging mechanisms to implement the instructions. To evaluate the functionality and performance of these two instructions, we implement a two-qubit version of an algorithm to study a disorder-induced metal-insulator transition and run 60 random instances of it, each of which realizes one disorder configuration and contains 40 two-qubit instructions (or gates) and 104 single-qubit instructions. We observe the expected quantum dynamics of the time-evolution of this system.

[1]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[2]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[3]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[4]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[5]  Xiang Fu,et al.  A heterogeneous quantum computer architecture , 2016, Conf. Computing Frontiers.

[6]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[7]  John Kubiatowicz,et al.  Running a Quantum Circuit at the Speed of Data , 2008, 2008 International Symposium on Computer Architecture.

[8]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[9]  Koen Bertels,et al.  An Experimental Microarchitecture for a Superconducting Quantum Processor , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[10]  Norbert M. Linke,et al.  Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.

[11]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[12]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[13]  Nicolas Regnault,et al.  Many-body localization and thermalization: Insights from the entanglement spectrum , 2016, 1603.00880.

[14]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[15]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[16]  Xiang Fu,et al.  eQASM: An Executable Quantum Instruction Set Architecture , 2018, ArXiv.

[17]  Mark Oskin,et al.  An Evaluation Framework and Instruction Set Architecture for Ion-Trap Based Quantum Micro-Architectures , 2005, ISCA 2005.

[18]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[19]  Telecommunications Board,et al.  Quantum computing , 2019, Mathematics and Computation.

[20]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[21]  Scott Pakin,et al.  Quantum Algorithm Implementations for Beginners , 2018, ACM Transactions on Quantum Computing.

[22]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[23]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[24]  K. Bertels,et al.  OpenQL : A Portable Quantum Programming Framework for Quantum Accelerators , 2020, ACM J. Emerg. Technol. Comput. Syst..

[25]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[26]  Margaret Martonosi,et al.  ScaffCC: Scalable compilation and analysis of quantum programs , 2015, Parallel Comput..

[27]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[28]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[29]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[30]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[31]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[32]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[33]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[34]  Sonika Johri,et al.  A systems perspective of quantum computing , 2019, Physics Today.

[35]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[36]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[37]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[38]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[39]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[40]  Sonika Johri,et al.  Many-body localization in imperfectly isolated quantum systems. , 2015, Physical review letters.