Chemical Tools for Studying the Impact of cis/trans Prolyl Isomerization on Signaling: A Case Study on RNA Polymerase II Phosphatase Activity and Specificity.

[1]  S. Showalter,et al.  Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain , 2017, Nature Communications.

[2]  L. S. Churchman,et al.  The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain , 2017, Nature Reviews Molecular Cell Biology.

[3]  Ilka Müller,et al.  Guidelines for the successful generation of protein–ligand complex crystals , 2017, Acta crystallographica. Section D, Structural biology.

[4]  Joe R. Cannon,et al.  Mapping the Phosphorylation Pattern of Drosophila melanogaster RNA Polymerase II Carboxyl-Terminal Domain Using Ultraviolet Photodissociation Mass Spectrometry. , 2017, ACS chemical biology.

[5]  Xiao Zhen Zhou,et al.  The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target , 2016, Nature Reviews Cancer.

[6]  Y. Zhang,et al.  Dephosphorylating eukaryotic RNA polymerase II. , 2016, Biochimica et biophysica acta.

[7]  P. Cramer,et al.  Heptad-Specific Phosphorylation of RNA Polymerase II CTD. , 2016, Molecular cell.

[8]  A. Ellington,et al.  Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. , 2015, ACS chemical biology.

[9]  S. Showalter,et al.  Quantitative biophysical characterization of intrinsically disordered proteins. , 2015, Biochemistry.

[10]  B. Brutscher,et al.  NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines. , 2015, Advances in experimental medicine and biology.

[11]  S. Showalter,et al.  A primer for carbon‐detected NMR applications to intrinsically disordered proteins in solution , 2015 .

[12]  S. Hanes The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. , 2014, Biochimica et biophysica acta.

[13]  J. Corden,et al.  RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. , 2013, Chemical reviews.

[14]  A. Ellington,et al.  novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. , 2013, ACS chemical biology.

[15]  Dirk Eick,et al.  The RNA polymerase II carboxy-terminal domain (CTD) code. , 2013, Chemical reviews.

[16]  F. Robert,et al.  The writers, readers, and functions of the RNA polymerase II C-terminal domain code. , 2013, Chemical reviews.

[17]  Š. Vaňáčová,et al.  Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. , 2012, Genes & development.

[18]  Yonghua Luo,et al.  Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. , 2012, ACS chemical biology.

[19]  S. Showalter,et al.  Carbon-Detected (15)N NMR Spin Relaxation of an Intrinsically Disordered Protein: FCP1 Dynamics Unbound and in Complex with RAP74. , 2012, The journal of physical chemistry letters.

[20]  Y. Liou,et al.  Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. , 2011, Trends in biochemical sciences.

[21]  N. Nicely,et al.  cis-Proline-mediated Ser(P)5 Dephosphorylation by the RNA Polymerase II C-terminal Domain Phosphatase Ssu72* , 2010, The Journal of Biological Chemistry.

[22]  Liang Tong,et al.  Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex , 2010, Nature.

[23]  C. Lima,et al.  The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. , 2008, Molecular cell.

[24]  L. Nicholson,et al.  Prolyl cis-trans isomerization as a molecular timer. , 2007, Nature chemical biology.

[25]  Lisa M. Shewchuk,et al.  Crystallization of protein–ligand complexes , 2006, Acta crystallographica. Section D, Biological crystallography.

[26]  Yan Zhang,et al.  Determinants for dephosphorylation of the RNA polymerase II C‐terminal domain by Scp1 , 2006, Molecular cell.

[27]  A. Otaka,et al.  Stereoselective synthesis of (Z)-alkene-containing proline dipeptide mimetics. , 2006, The Journal of organic chemistry.

[28]  K. Lu,et al.  Phosphorylation-specific prolyl isomerization: is there an underlying theme? , 2005, Nature Cell Biology.

[29]  S. Pfaff,et al.  Small CTD Phosphatases Function in Silencing Neuronal Gene Expression , 2005, Science.

[30]  Michael Hampsey,et al.  Ssu72 Is an RNA polymerase II CTD phosphatase. , 2004, Molecular cell.

[31]  D. Brow,et al.  Ssu72 Protein Mediates Both Poly(A)-Coupled and Poly(A)-Independent Termination of RNA Polymerase II Transcription , 2003, Molecular and Cellular Biology.

[32]  S. Buratowski,et al.  The CTD code , 2003, Nature Structural Biology.

[33]  P. Lin,et al.  A Novel RNA Polymerase II C-terminal Domain Phosphatase That Preferentially Dephosphorylates Serine 5* , 2003, Journal of Biological Chemistry.

[34]  Frédéric Devaux,et al.  Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast , 2003, The EMBO journal.

[35]  John R. Goodell,et al.  Serine-cis-proline and serine-trans-proline isosteres: stereoselective synthesis of (Z)- and (E)-alkene mimics by Still-Wittig and Ireland-Claisen rearrangements. , 2003, The Journal of organic chemistry.

[36]  H. Scheraga,et al.  Proline cis-trans isomerization and protein folding. , 2002, Biochemistry.

[37]  W. Keller,et al.  A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. , 2002, Molecular cell.

[38]  T. Kinoshita,et al.  Regio- and Stereoselective Synthesis of (E)-Alkene trans-Xaa-Pro Dipeptide Mimetics Utilizing Organocopper-Mediated Anti-SN2‘ Reactions , 2002 .

[39]  S. Shuman,et al.  Characterization of the CTD Phosphatase Fcp1 from Fission Yeast , 2002, The Journal of Biological Chemistry.

[40]  P. Shaw Peptidyl‐prolyl isomerases: a new twist to transcription , 2002, EMBO reports.

[41]  Y. Liou,et al.  Pinning down proline-directed phosphorylation signaling. , 2002, Trends in cell biology.

[42]  J. Heitman,et al.  The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery , 2000, The EMBO journal.

[43]  F. Holstege,et al.  An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. , 1999, Molecular cell.

[44]  S. Hart,et al.  Enantio- and Regioselective Synthesis of a (Z)-Alkene cis-Proline Mimic. , 1999 .

[45]  S. Hart,et al.  Enantio- and Regioselective Synthesis of a (Z)-Alkene cis-Proline Mimic , 1998 .

[46]  M. Kirschner,et al.  Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. , 1997, Science.

[47]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[48]  S. Carter,et al.  Inorganic phosphate assay with malachite green: an improvement and evaluation. , 1982, Journal of biochemical and biophysical methods.