Image Analysis Applications of Morphological Operators based on Uninorms

This paper presents a continuation of the study on a mathematical morphology based on left-continuous conjunctive uni- norms given in (1). Experimental results are displayed using the mor- phological Top-Hat transformation, used to highlight certain compo- nents of the image, and on the reduction and elimination of noise using alternate filters that are generated with the operators of open- ing and closing associated with these morphological operators Keywords— Mathematical morphology, Top-Hat, alternate filters, uninorms, representable uninorms, idempotent uninorm.

[1]  D. Ville,et al.  Fuzzy Filters for Image Processing , 2003 .

[2]  Joan Torrens,et al.  Residual implications and co-implications from idempotent uninorms , 2004, Kybernetika.

[3]  Bernard De Baets,et al.  A Fuzzy Morphology: a Logical Approach , 1998 .

[4]  Gui Wei-hua,et al.  Medical Images Edge Detection Based on Mathematical Morphology , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[5]  Bernard De Baets,et al.  Fuzzy morphology based on conjunctive uninorms , 1997 .

[6]  Q. Henry Wu,et al.  A pseudo top-hat mathematical morphological approach to edge detection in dark regions , 2002, Pattern Recognit..

[7]  E. Kerre,et al.  Classical and Fuzzy Approaches towards Mathematical Morphology , 2000 .

[8]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[9]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[10]  J. Torrens,et al.  Algebraic Properties of Fuzzy Morphological Operators based on Uninorms , 2003 .

[11]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Bernard De Baets,et al.  Residual operators of uninorms , 1999, Soft Comput..

[13]  Arnaldo de Albuquerque Araújo,et al.  A directional and parametrized transition detection algorithm based on morphological residues , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[14]  Daniel Ruiz-Aguilera,et al.  Edge-Images Using a Uninorm-Based Fuzzy Mathematical Morphology: Opening and Closing , 2009 .

[15]  Mohammad Bagher Menhaj,et al.  A Fuzzy Logic Control Based Approach for Image Filtering , 2000 .

[16]  Juan Ignacio Pastore,et al.  Multiscale Morphological Operators and Geodesic Distance applied to Computed Axial Tomography Segmentation , 2007, IEEE Latin America Transactions.

[17]  B. Baets,et al.  The fundamentals of fuzzy mathematical morphology, part 2 : idempotence, convexity and decomposition , 1995 .

[18]  Joe-Air Jiang,et al.  Mathematical-morphology-based edge detectors for detection of thin edges in low-contrast regions , 2007 .

[19]  Dimitri Van De Ville,et al.  Noise reduction by fuzzy image filtering , 2003, IEEE Trans. Fuzzy Syst..

[20]  Hamid R. Tizhoosh,et al.  Fuzzy Image Enhancement: An Overview , 2000 .

[21]  Yau-Hwang Kuo,et al.  Adaptive Fuzzy Filter and Its Application to Image Enhancement , 2000 .

[22]  B. Baets,et al.  The fundamentals of fuzzy mathematical morphology, part 1 : basic concepts , 1995 .