A thick anisotropic plate element in the framework of an absolute nodal coordinate formulation

[1]  M. Boltežar,et al.  Absolute Nodal Coordinates in Digital Image Correlation , 2013 .

[2]  Ayman A. Nada,et al.  Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates , 2012 .

[3]  J. Slavič,et al.  Experimental validation of a complex, large-scale, rigid-body mechanism , 2012 .

[4]  Xiaoting Rui,et al.  Panel flutter analysis of plate element based on the absolute nodal coordinate formulation , 2012 .

[5]  Margarida F. Machado,et al.  A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems , 2011 .

[6]  Lei Yu,et al.  Integration of absolute nodal elements into multibody system , 2010 .

[7]  X. Rui,et al.  Plate/shell element of variable thickness based on the absolute nodal coordinate formulation , 2010 .

[8]  Ahmed A. Shabana,et al.  Computational Dynamics, Third Edition , 2009 .

[9]  Lionel Manin,et al.  Introduction of damping into the flexible multibody belt-drive model: A numerical and experimental investigation , 2009 .

[10]  A. Mikkola,et al.  A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation , 2009 .

[11]  Gregor Čepon,et al.  Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact description , 2009 .

[12]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[13]  Oleg Dmitrochenko,et al.  Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics , 2008 .

[14]  A. Shabana,et al.  Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations , 2008 .

[15]  Ahmed A. Shabana,et al.  Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams , 2007 .

[16]  Ahmed A. Shabana,et al.  Nonlinear dynamics of three-dimensional belt drives using the finite-element method , 2007 .

[17]  Daniel García-Vallejo,et al.  Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation , 2006 .

[18]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[19]  Hiroyuki Sugiyama,et al.  On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems , 2004 .

[20]  Hiroyuki Sugiyama,et al.  Application of Plasticity Theory and Absolute Nodal Coordinate Formulation to Flexible Multibody System Dynamics , 2004 .

[21]  Jeong-Hyun Sohn,et al.  Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments , 2004 .

[22]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[23]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[24]  R. Farris,et al.  Orthotropic elastic constants for polyimide film , 2001 .

[25]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[26]  Ahmed A. Shabana,et al.  Use of general nonlinear material models in beam problems: Application to belts and rubber chains , 2009 .

[27]  A. Shabana Computational Continuum Mechanics: Computational Geometry and Finite Element Analysis , 2008 .

[28]  Arend L. Schwab,et al.  COMPARISON OF THREE-DIMENSIONAL FLEXIBLE THIN PLATE ELEMENTS FOR MULTIBODY DYNAMIC ANALYSIS: FINITE ELEMENT FORMULATION AND ABSOLUTE NODAL COORDINATE FORMULATION , 2007 .

[29]  K. A. Semendyayev,et al.  Handbook of mathematics , 1985 .