Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition

[1]  Tsutomu Suzuki,et al.  Dual‐mode recognition of noncanonical tRNAsSer by seryl‐tRNA synthetase in mammalian mitochondria , 2005, The EMBO journal.

[2]  D. Söll,et al.  Selective inhibition of divergent seryl‐tRNA synthetases by serine analogues , 2005, FEBS letters.

[3]  J. Perona,et al.  tRNA-dependent Aminoacyl-adenylate Hydrolysis by a Nonediting Class I Aminoacyl-tRNA Synthetase* , 2005, Journal of Biological Chemistry.

[4]  J. Perona,et al.  Amino Acid-dependent Transfer RNA Affinity in a Class I Aminoacyl-tRNA Synthetase* , 2005, Journal of Biological Chemistry.

[5]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[6]  Jingfei Huang,et al.  Evolution of different oligomeric glycyl‐tRNA synthetases , 2005, FEBS letters.

[7]  D. Söll,et al.  Differential Modes of Transfer RNASer Recognition in Methanosarcina barkeri* , 2004, Journal of Biological Chemistry.

[8]  A. Torres-Larios,et al.  Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. , 2004, Molecular cell.

[9]  J. Perona,et al.  Shape-selective RNA recognition by cysteinyl-tRNA synthetase , 2004, Nature Structural &Molecular Biology.

[10]  D. Söll,et al.  A freestanding proofreading domain is required for protein synthesis quality control in Archaea. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Schimmel,et al.  A domain for editing by an archaebacterial tRNA synthetase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Söll,et al.  The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. , 2004, European journal of biochemistry.

[13]  Bernard Rees,et al.  Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. , 2003, Journal of molecular biology.

[14]  D. Söll,et al.  Aminoacyl-tRNA synthesis in methanogenic Archaea , 2002 .

[15]  S. Cusack,et al.  Class I tyrosyl‐tRNA synthetase has a class II mode of cognate tRNA recognition , 2002, The EMBO journal.

[16]  Tsutomu Suzuki,et al.  Dual Mode Recognition of Two Isoacceptor tRNAs by Mammalian Mitochondrial Seryl-tRNA Synthetase* , 2001, The Journal of Biological Chemistry.

[17]  S. Cusack,et al.  A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. , 2001, Journal of molecular biology.

[18]  P. Schimmel,et al.  Two Classes of tRNA Synthetases Suggested by Sterically Compatible Dockings on tRNA Acceptor Stem , 2001, Cell.

[19]  Pascale Romby,et al.  Transfer RNA–Mediated Editing in Threonyl-tRNA Synthetase The Class II Solution to the Double Discrimination Problem , 2000, Cell.

[20]  R Giegé,et al.  Search for characteristic structural features of mammalian mitochondrial tRNAs. , 2000, RNA.

[21]  M. Bovee,et al.  Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase , 2000, Nature Structural Biology.

[22]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[23]  D. Söll,et al.  Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. , 1999, Genetics.

[24]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[25]  D. Moras,et al.  Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. , 1999, Journal of molecular biology.

[26]  B. Lenhard,et al.  tRNA recognition and evolution of determinants in seryl-tRNA synthesis. , 1999, Nucleic acids research.

[27]  D. Söll,et al.  Sequence Divergence of Seryl-tRNA Synthetases in Archaea , 1998, Journal of bacteriology.

[28]  Ž. Kućan,et al.  Detection of Noncovalent tRNA·Aminoacyl-tRNA Synthetase Complexes by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry* , 1997, The Journal of Biological Chemistry.

[29]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[30]  M. Rooman,et al.  Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. , 1996, Journal of molecular biology.

[31]  S Cusack,et al.  The crystal structure of the ternary complex of T.thermophilus seryl‐tRNA synthetase with tRNA(Ser) and a seryl‐adenylate analogue reveals a conformational switch in the active site. , 1996, The EMBO journal.

[32]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[33]  J. Willison,et al.  Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. , 1995, Nucleic acids research.

[34]  S. Cusack,et al.  The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. , 1995, Structure.

[35]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[36]  R. Leberman,et al.  Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. , 1994, Nucleic acids research.

[37]  G. Grübel,et al.  Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. , 1994, Science.

[38]  S Cusack,et al.  The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). , 1994, Science.

[39]  S. Cusack,et al.  Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 A resolution. , 1993, Journal of molecular biology.

[40]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[41]  S. Cusack,et al.  Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases , 1991, Nucleic Acids Res..

[42]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[43]  S. Cusack,et al.  A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å , 1990, Nature.

[44]  Olivier Poch,et al.  Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs , 1990, Nature.

[45]  A. Fersht,et al.  Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. , 1981, Nucleic acids research.

[46]  A. N. Baldwin,et al.  Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. , 1966, The Journal of biological chemistry.

[47]  S. Cusack,et al.  Structure, function and evolution of seryl-tRNA synthetases , 2005 .

[48]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[49]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[50]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[51]  A. Böck,et al.  The Selenocysteine-Inserting tRNA Species: Structure and Function , 1995 .

[52]  S. Cusack Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. , 1993, Biochimie.

[53]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Automated Main-chain Model Building by Template Matching and Iterative Fragment Extension , 2022 .