Visual Functions of the Thalamus.

The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context.

[1]  Robert H Wurtz,et al.  Attentional Modulation of Thalamic Reticular Neurons , 2006, The Journal of Neuroscience.

[2]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[3]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[4]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[5]  V. Casagrande,et al.  The Afferent , Intrinsic , and Efferent Connections of Primary Visual Cortex in Primates , 2005 .

[6]  M. Steriade The corticothalamic system in sleep. , 2003, Frontiers in bioscience : a journal and virtual library.

[7]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[8]  W. Martin Usrey,et al.  Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits , 2013, Nature.

[9]  J. Alonso,et al.  Brain State Effects on Layer 4 of the Awake Visual Cortex , 2014, The Journal of Neuroscience.

[10]  Sherman Sm,et al.  Thalamic relay functions. , 2001 .

[11]  R. McCarley,et al.  Control of sleep and wakefulness. , 2012, Physiological reviews.

[12]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[13]  M. Bickford,et al.  Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus , 2008, The Journal of comparative neurology.

[14]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[15]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[16]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[17]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[18]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[19]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[20]  Javier Cudeiro,et al.  Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback , 2014, Front. Behav. Neurosci..

[21]  T. Brown,et al.  Binocular Integration in the Mouse Lateral Geniculate Nuclei , 2014, Current Biology.

[22]  Resting discharge and dark adaptation in the cat. , 1954, The Journal of physiology.

[23]  Shane R. Crandall,et al.  A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses , 2015, Neuron.

[24]  P. Lennie,et al.  The mechanism of peripherally evoked responses in retinal ganglion cells. , 1979, The Journal of physiology.

[25]  Adam M Sillito,et al.  Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. , 2013, Journal of neurophysiology.

[26]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[27]  R. Shapley,et al.  The effect of contrast on the non‐linear response of the Y cell. , 1980, The Journal of physiology.

[28]  S. Sherman,et al.  Thalamic relay functions. , 2001, Progress in brain research.

[29]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[30]  R C Reid,et al.  Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis , 2000, The Journal of physiology.

[31]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[32]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[33]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[34]  Henry J. Alitto,et al.  Distinct Properties of Stimulus-Evoked Bursts in the Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[35]  W. Usrey Spike timing and visual processing in the retinogeniculocortical pathway. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  D. Dacey,et al.  Synaptic Mechanisms of Color and Luminance Coding: Rediscovering the X-Y-cell dichotomy in primate retinal ganglion cells , 2013 .

[37]  Oren Sagher,et al.  Functional mapping. , 2013, Journal of neurosurgery.

[38]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[39]  L. Young,et al.  Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus) , 2014, Neuroscience.

[40]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[41]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[42]  P. C. Murphy,et al.  Spatial summation in lateral geniculate nucleus and visual cortex , 2000, Experimental Brain Research.

[43]  B. B. Lee,et al.  Receptive field structure in the primate retina , 1996, Vision Research.

[44]  S. Sherman,et al.  Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. , 1992, Journal of neurophysiology.

[45]  Henry J. Alitto,et al.  Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for Gamma-Band Oscillations , 2014, The Journal of Neuroscience.

[46]  W. Martin Usrey,et al.  Spike Timing and Information Transmission at Retinogeniculate Synapses , 2010, The Journal of Neuroscience.

[47]  Xin Wang,et al.  Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing , 2010, Nature Neuroscience.

[48]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[49]  Xin Wang,et al.  Recoding of Sensory Information across the Retinothalamic Synapse , 2010, The Journal of Neuroscience.

[50]  Sabine Kastner,et al.  Effects of Sustained Spatial Attention in the Human Lateral Geniculate Nucleus and Superior Colliculus , 2009, The Journal of Neuroscience.

[51]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[52]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[53]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[54]  R. Shapley,et al.  The origin of the S (slow) potential in the mammalian Lateral Geniculate Nucleus , 1984, Experimental Brain Research.

[55]  S. Sherman,et al.  Control of Dendritic Outputs of Inhibitory Interneurons in the Lateral Geniculate Nucleus , 2000, Neuron.

[56]  Xin Wang,et al.  Retinal Oscillations Carry Visual Information to Cortex , 2008, Front. Syst. Neurosci..

[57]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[58]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[59]  J. Alonso,et al.  Directional selective neurons in the awake LGN: response properties and modulation by brain state. , 2014, Journal of neurophysiology.

[60]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[61]  E. Gray Electron microscopy of excitatory and inhibitory synapses: a brief review. , 1969, Progress in brain research.

[62]  R. Masland Cell populations of the retina: the Proctor lecture. , 2011, Investigative ophthalmology & visual science.

[63]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[64]  D. Dacey,et al.  Physiology of the A1 amacrine: A spiking, axon-bearing interneuron of the macaque monkey retina , 1997, Visual Neuroscience.

[65]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[66]  R. W. Güillery A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[67]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[68]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[69]  M. Steriade Acetylcholine systems and rhythmic activities during the waking--sleep cycle. , 2004, Progress in brain research.

[70]  W. Usrey,et al.  Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey , 2009, Neuron.

[71]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[72]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[73]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[74]  Edward M. Callaway,et al.  A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex , 2014 .

[75]  Pascal Fries,et al.  Communication through coherence with inter-areal delays , 2015, Current Opinion in Neurobiology.

[76]  L. Pinto,et al.  Response properties of ganglion cells in the isolated mouse retina , 1993, Visual Neuroscience.

[77]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[78]  R. Freeman,et al.  Spatiotemporal flow of information in the early visual pathway , 2014, The European journal of neuroscience.

[79]  B. E. Reese,et al.  ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat , 1988, Brain Research Reviews.

[80]  D. Fitzpatrick,et al.  The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex , 1994, Visual Neuroscience.

[81]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[82]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[83]  Henry J. Alitto,et al.  A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys , 2011, The Journal of physiology.

[84]  B. Cleland,et al.  An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat , 2001, Brain Research.

[85]  W. Usrey The role of spike timing for thalamocortical processing , 2002, Current Opinion in Neurobiology.

[86]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[87]  M Imbert,et al.  Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse , 1984, The Journal of comparative neurology.

[88]  M. Carandini,et al.  Locomotion Controls Spatial Integration in Mouse Visual Cortex , 2013, Current Biology.

[89]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[90]  Xin Wang,et al.  Inhibitory circuits for visual processing in thalamus , 2011, Current Opinion in Neurobiology.

[91]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[92]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[93]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[94]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[95]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[96]  Nicholas J. Priebe,et al.  Emergence of Orientation Selectivity in the Mammalian Visual Pathway , 2013, The Journal of Neuroscience.

[97]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[98]  B. Jones Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. , 2004, Progress in brain research.

[99]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  J. Alonso,et al.  Getting Drowsy? Alert/Nonalert Transitions and Visual Thalamocortical Network Dynamics , 2011, The Journal of Neuroscience.

[101]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[102]  David A McCormick,et al.  Active Action Potential Propagation But Not Initiation in Thalamic Interneuron Dendrites , 2011, The Journal of Neuroscience.

[103]  Pamela Reinagel,et al.  Visual Control of Burst Priming in the Anesthetized Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[104]  S. W. Kuffler Neurons in the retina; organization, inhibition and excitation problems. , 1952, Cold Spring Harbor symposia on quantitative biology.

[105]  M. Steriade Grouping of brain rhythms in corticothalamic systems , 2006, Neuroscience.

[106]  A. Parent,et al.  Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys , 1988, The Journal of comparative neurology.

[107]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[108]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[109]  Michael M. Halassa,et al.  State-Dependent Architecture of Thalamic Reticular Subnetworks , 2014, Cell.

[110]  Wade G. Regehr,et al.  Active Dendritic Conductances Dynamically Regulate GABA Release from Thalamic Interneurons , 2008, Neuron.

[111]  D. Ulrich,et al.  Functional mapping of GABA(B)-receptor subtypes in the thalamus. , 2007, Journal of neurophysiology.

[112]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[113]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[114]  N. Lesica,et al.  Encoding of Natural Scene Movies by Tonic and Burst Spikes in the Lateral Geniculate Nucleus , 2004, The Journal of Neuroscience.

[115]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[116]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[117]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Henry J. Alitto,et al.  Receptive Fields Interspike Interval Analysis of Retinal Ganglion Cell , 2015 .

[119]  Henry J. Alitto,et al.  Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. , 2004, Journal of neurophysiology.

[120]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[121]  J. L. Conway,et al.  Laminar organization of tree shrew dorsal lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[122]  W. Burke,et al.  The interpretation of the extracellular response of single lateral geniculate cells , 1962, The Journal of physiology.

[123]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[124]  Paul R. Martin,et al.  Cortical-Like Receptive Fields in the Lateral Geniculate Nucleus of Marmoset Monkeys , 2013, The Journal of Neuroscience.

[125]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[126]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[127]  C. Cox Complex regulation of dendritic transmitter release from thalamic interneurons , 2014, Current Opinion in Neurobiology.

[128]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[129]  R. Guillery,et al.  Paying attention to the thalamic reticular nucleus , 1998, Trends in Neurosciences.

[130]  D. Raczkowski,et al.  Sublaminar organization within layer VI of the striate cortex in Galago , 1990, The Journal of comparative neurology.

[131]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[132]  W. Martin Usrey,et al.  Origin and Dynamics of Extraclassical Suppression in the Lateral Geniculate Nucleus of the Macaque Monkey , 2008, Neuron.

[133]  Henry J. Alitto,et al.  Interspike interval analysis of retinal ganglion cell receptive fields. , 2007, Journal of neurophysiology.

[134]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[135]  T. L. Hickey,et al.  An autoradiographic study of retinogeniculate pathways in the cat and the fox , 1974, The Journal of comparative neurology.

[136]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[137]  David W. Royal,et al.  Low-threshold Ca2+-associated bursts are rare events in the LGN of the awake behaving monkey. , 2006, Journal of neurophysiology.

[138]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[139]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[140]  Y. Fukada,et al.  Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. , 1971, Vision research.

[141]  Paul R. Martin,et al.  Identification of a Pathway from the Retina to Koniocellular Layer K1 in the Lateral Geniculate Nucleus of Marmoset , 2014, The Journal of Neuroscience.

[142]  P. C. Murphy,et al.  Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  Xin Wang,et al.  Statistical Wiring of Thalamic Receptive Fields Optimizes Spatial Sampling of the Retinal Image , 2014, Neuron.

[144]  David A McCormick,et al.  Brain state dependent activity in the cortex and thalamus , 2015, Current Opinion in Neurobiology.

[145]  Adam M Sillito,et al.  Corticothalamic interactions in the transfer of visual information. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[146]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[147]  M. H. Rowe,et al.  Dynamic properties of retino-geniculate synapses in the cat , 2001, Visual Neuroscience.

[148]  H Ikeda,et al.  Receptive field organization of ‘sustained’ and ‘transient’ retinal ganglion cells which subserve different functional roles , 1972, The Journal of physiology.

[149]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.