Fragmentation of a novel marine peptide, plicatamide, involves an unusual gas-phase intramolecular rearrangement

[1]  A. Craig,et al.  Plicatamide: A lead to the biosynthetic origins of the tunichromes? , 2000, Biochemical and biophysical research communications.

[2]  A. Craig THE CHARACTERIZATION OF CONOTOXINS§ , 2000 .

[3]  J. Speir,et al.  [M + Fe − 5H]2− peptide ion composition verified by Fourier transform mass spectrometry accurate mass and tandem mass spectrometry analyses , 2000, Journal of the American Society for Mass Spectrometry.

[4]  M. Gross,et al.  Multistep tandem mass spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer , 1999, Journal of the American Society for Mass Spectrometry.

[5]  D. Yoshikami,et al.  An O-glycosylated neuroexcitatory conus peptide. , 1998, Biochemistry.

[6]  J. Palermo,et al.  Celenamide E, a Tripeptide Alkaloid from the Patagonian Sponge Cliona chilensis , 1998 .

[7]  G. Mackie,et al.  Sequence of two gonadotropin releasing hormones from tunicate suggest an important role of conformation in receptor activation , 1997, FEBS letters.

[8]  B. W. Erickson,et al.  Novel Peptide Dissociation: Gas-Phase Intramolecular Rearrangement of Internal Amino Acid Residues , 1997 .

[9]  J. Rivier,et al.  A Novel Post-translational Modification Involving Bromination of Tryptophan , 1997, The Journal of Biological Chemistry.

[10]  G. Glish,et al.  Secondary Interactions Affecting the Dissociation Patterns of Arginine-Containing Peptide Ions , 1996 .

[11]  A. Burlingame,et al.  Mass spectrometric‐based revision of the structure of a cysteine‐rich peptide toxin with γ‐carboxyglutamic acid, TxVIIA, from the sea snail, Conus textile , 1996, Protein science : a publication of the Protein Society.

[12]  R. Boyd,et al.  Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides. , 1994, Rapid communications in mass spectrometry : RCM.

[13]  P. Thibault,et al.  Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. , 1993, Analytical chemistry.

[14]  J. Rivier,et al.  An expanded nomenclature scheme for labeling peptide fragmentations and its use with 'AMASS', a computer program for generating all possible fragment ion structures from known precursors. , 1993, Biological mass spectrometry.

[15]  G. Schiefer,et al.  Structure of the Tunichrome of Tunicates and its Role in Concentrating Vanadium , 1992 .

[16]  H. Yokosawa,et al.  Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. , 1990, Biochemistry.

[17]  K. Nakanishi,et al.  The tunichromes. A class of reducing blood pigments from sea squirts: isolation, structures, and vanadium chemistry. , 1988, Journal of the American Chemical Society.

[18]  A. Engström,et al.  Plasma desorption mass spectrometry coupled with conventional peptide sequencing techniques. , 1987, Biomedical & environmental mass spectrometry.

[19]  J. Waite,et al.  Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase. , 1986, Biochimica et biophysica acta.

[20]  J. McIntosh,et al.  Gamma-carboxyglutamate in a neuroactive toxin. , 1984, The Journal of biological chemistry.

[21]  R. Andersen,et al.  LINEAR PEPTIDE ALKALOIDS FROM THE SPONGE CLIONA CELATA (GRANT). CELENAMIDES C AND D , 1980 .

[22]  R. Andersen,et al.  CELENAMIDES A AND B, LINEAR PEPTIDE ALKALOIDS FROM THE SPONGE CLIONA CELATA , 1980 .

[23]  R. Andersen,et al.  CLIONAMIDE, A MAJOR METABOLITE OF THE SPONGE CLIONA CELATA GRANT , 1979 .