Variable selection for noisy data applied in proteomics
暂无分享,去创建一个
Pierre Grangeat | Noura Dridi | Audrey Giremus | Jean-François Giovannelli | Caroline Truntzer | Jean-Philippe Charrier | Patrick Ducoroy | Pascal Roy | Catherine Mercier | L. Gerfaut | J. Giovannelli | P. Grangeat | A. Giremus | P. Ducoroy | C. Mercier | Pascal Roy | J. Charrier | C. Truntzer | Noura Dridi | L. Gerfaut
[1] Christian P. Robert,et al. The Bayesian choice , 1994 .
[2] Gordon K Smyth,et al. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.
[3] H. Akaike. A new look at the statistical model identification , 1974 .
[4] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[5] Pascal Szacherski,et al. Joint Bayesian hierarchical inversion-classification and application in proteomics , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).
[6] Laurent Gerfault,et al. Apprentissage supervisé robuste de caractéristiques de classes. Application en protéomique , 2011 .
[7] Z. Q. John Lu. Bayesian Inference for Gene Expression and Proteomics , 2007 .
[8] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[9] Jean-Charles Sanchez,et al. Proteomics: new perspectives, new biomedical opportunities , 2000, The Lancet.
[10] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[11] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[12] Noura Dridi,et al. Variable selection for a mixed population applied in proteomics , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[13] Peter Buhlmann,et al. BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL FITTING , 2007, 0804.2752.