Finite Volume Approximation of One-Dimensional Stiff Convection-Diffusion Equations
暂无分享,去创建一个
[1] Wiktor Eckhaus,et al. Boundary Layers in Linear Elliptic Singular Perturbation Problems , 1972 .
[2] Roger Temam,et al. Boundary layers in smooth curvilinear domains: Parabolic problems , 2009 .
[3] Guido Kanschat,et al. A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..
[4] Roger Temam,et al. On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications , 2006, J. Sci. Comput..
[5] Christoph Schwab,et al. The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..
[6] E. M. de Jager,et al. Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type , 1966 .
[7] R. Bruce Kellogg,et al. Layers and corner singularities in singularly perturbed elliptic problems , 2008 .
[8] J. Lions. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .
[9] Shagi-Di Shih,et al. Asymptotic anaylsis of a singular perturbation problem , 1987 .
[10] Jens Markus Melenk,et al. hp-Finite Element Methods for Singular Perturbations , 2002 .
[11] Chang-Yeol Jung,et al. Numerical approximation of two‐dimensional convection‐diffusion equations with boundary layers , 2005 .
[12] Weeratunge Malalasekera,et al. An introduction to computational fluid dynamics - the finite volume method , 2007 .
[13] Chang-Yeol Jung,et al. Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain , 2008, Asymptot. Anal..
[14] Robert E O'Malley. Singular perturbation analysis for ordinary differential equations , 1977 .
[15] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[16] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[17] Gung-Min Gie,et al. Singular perturbation problems in a general smooth domain , 2009, Asymptot. Anal..
[18] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[19] Roger Temam,et al. COMPARISON OF FINITE VOLUME AND FINITE DIFFERENCE METHODS AND APPLICATION , 2006 .
[20] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[21] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[22] Roger Temam,et al. Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point , 2007 .
[23] Roger Temam,et al. Numerical approximation of one-dimensional stationary diffusion equations with boundary layers , 2002 .