Optimal control of the self-bound dipolar droplet formation process
暂无分享,去创建一个
Tim Langen | Lukas Exl | Norbert J. Mauser | Jan-Frederik Mennemann | N. Mauser | J. Mennemann | L. Exl | T. Langen
[1] H. Hadiyantoa,et al. Control vector parameterization with sensitivity based refinement applied to baking optimization , 2008 .
[2] Ricardo Carretero-González,et al. Numerical Stability of Explicit Runge-Kutta Finite Difference Schemes for the Nonlinear Schrödinger Equation , 2011, ArXiv.
[3] Y. Wang,et al. Quantum error correction in a solid-state hybrid spin register , 2013, Nature.
[4] Mechthild Thalhammer,et al. High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..
[5] M. Gerdts. Optimal Control of ODEs and DAEs , 2011 .
[6] G. V. Winckel,et al. Optimal control of number squeezing in trapped Bose-Einstein condensates , 2009, 0908.1634.
[7] R. Wilson,et al. Self-bound dipolar droplet: A localized matter wave in free space , 2016, 1606.00824.
[8] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[9] P. Zoller,et al. Extended Bose-Hubbard models with ultracold magnetic atoms , 2015, Science.
[10] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[11] J. Schmiedmayer,et al. Vibrational state inversion of a Bose–Einstein condensate: optimal control and state tomography , 2012, 1212.4173.
[12] Christiane P. Koch,et al. Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.
[13] L. Santos,et al. Quantum filaments in dipolar Bose-Einstein condensates , 2016, 1601.04501.
[14] Tommaso Calarco,et al. Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.
[15] Tommaso Calarco,et al. Chopped random-basis quantum optimization , 2011, 1103.0855.
[16] L. Santos,et al. Observation of Roton Mode Population in a Dipolar Quantum Gas , 2017, Nature Physics.
[17] Leslie Greengard,et al. A free-space adaptive fmm-based pde solver in three dimensions , 2011 .
[18] Dieter Kraft,et al. On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .
[19] Leslie Greengard,et al. A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..
[20] Ulrich Hohenester,et al. Twin-atom beams , 2010, 1012.2348.
[21] Tilman Pfau,et al. Onset of a modulational instability in trapped dipolar Bose-Einstein condensates , 2017, 1711.07275.
[23] Wolfgang Marquardt,et al. Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..
[24] A. Pelster,et al. Quantum fluctuations in dipolar Bose gases , 2011, 1103.4128.
[25] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[26] U. Hohenester,et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes , 2014, 1409.2976.
[27] I. Bloch,et al. Optimal control of complex atomic quantum systems , 2015, Scientific Reports.
[28] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[29] A. Borzì,et al. Computational techniques for a quantum control problem with H1-cost , 2008 .
[30] T. Schumm,et al. Interferometry with non-classical motional states of a Bose–Einstein condensate , 2014, Nature Communications.
[31] John L. Bohn,et al. Bogoliubov modes of a dipolar condensate in a cylindrical trap (13 pages) , 2006 .
[32] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[33] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[34] Andreas Angerer,et al. Smooth Optimal Quantum Control for Robust Solid-State Spin Magnetometry. , 2014, Physical review letters.
[35] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[36] Succi,et al. Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[37] Masahito Ueda,et al. d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.
[38] Jr-Shin Li,et al. Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.
[39] Leslie Greengard,et al. Fast convolution with free-space Green's functions , 2016, J. Comput. Phys..
[40] Ulrich Hohenester,et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Consideration of filter effects , 2007, 1409.2976.
[41] Lukas Exl,et al. A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions , 2016, Comput. Phys. Commun..
[42] H. Saito. Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose–Einstein Condensate Stabilized by Quantum Fluctuation , 2016, 1603.03148.
[43] M. Lewenstein,et al. The physics of dipolar bosonic quantum gases , 2009, 0905.0386.
[44] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[45] Christiane P. Koch,et al. Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.
[46] L. Santos,et al. Quantum-Fluctuation-driven crossover from a dilute bose-einstein condensate to a macrodroplet in a dipolar quantum fluid , 2016, 1607.06613.
[47] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[48] L. Santos,et al. Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. , 2018, Physical review letters.
[49] Ulrich Hohenester,et al. OCTBEC - A Matlab toolbox for optimal quantum control of Bose-Einstein condensates , 2013, Comput. Phys. Commun..
[50] A. Borzì,et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.
[51] Richard W. Johnson. Higher order B-spline collocation at the Greville abscissae , 2005 .
[52] Yong Zhang,et al. Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation , 2015, J. Comput. Phys..
[53] D. Tannor,et al. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.
[54] D. Matthes,et al. Optimal control of Bose–Einstein condensates in three dimensions , 2015, 1507.07319.
[55] Jacob Sherson,et al. Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates , 2018, Physical Review A.
[56] Philippe Chatelain,et al. A high order solver for the unbounded Poisson equation , 2013, J. Comput. Phys..
[57] J. C. Aguilar,et al. High-order corrected trapezoidal quadrature rules for the coulomb potential in three dimensions , 2005 .
[58] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[59] T. Maier,et al. Emergence of Chaotic Scattering in Ultracold Er and Dy. , 2015, Physical review. X.
[60] Tommaso Calarco,et al. Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.
[61] Jan Meijer,et al. High-fidelity spin entanglement using optimal control , 2013, Nature Communications.
[62] G. Biros,et al. PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials , 2015 .
[63] T. Pfau,et al. Striped states in a many-body system of tilted dipoles , 2017, 1706.09388.
[64] Tilman Pfau,et al. Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.
[65] Peter Pulay,et al. Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory , 2002 .
[66] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .