Optimal control of the self-bound dipolar droplet formation process

Dipolar Bose-Einstein condensates have recently attracted much attention in the world of quantum many body experiments. While the theoretical principles behind these experiments are typically supported by numerical simulations, the application of optimal control algorithms could potentially open up entirely new possibilities. As a proof of concept, we demonstrate that the formation process of a single dipolar droplet state could be dramatically accelerated using advanced concepts of optimal control. More specifically, our optimization is based on a multilevel B-spline method reducing the number of required cost function evaluations and hence significantly reducing the numerical effort. Moreover, our strategy allows to consider box constraints on the control inputs in a concise and efficient way. To further improve the overall efficiency, we show how to evaluate the dipolar interaction potential in the generalized Gross-Pitaevskii equation without sacrificing the spectral convergence rate of the underlying time-splitting spectral method.

[1]  H. Hadiyantoa,et al.  Control vector parameterization with sensitivity based refinement applied to baking optimization , 2008 .

[2]  Ricardo Carretero-González,et al.  Numerical Stability of Explicit Runge-Kutta Finite Difference Schemes for the Nonlinear Schrödinger Equation , 2011, ArXiv.

[3]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[4]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[5]  M. Gerdts Optimal Control of ODEs and DAEs , 2011 .

[6]  G. V. Winckel,et al.  Optimal control of number squeezing in trapped Bose-Einstein condensates , 2009, 0908.1634.

[7]  R. Wilson,et al.  Self-bound dipolar droplet: A localized matter wave in free space , 2016, 1606.00824.

[8]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[9]  P. Zoller,et al.  Extended Bose-Hubbard models with ultracold magnetic atoms , 2015, Science.

[10]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[11]  J. Schmiedmayer,et al.  Vibrational state inversion of a Bose–Einstein condensate: optimal control and state tomography , 2012, 1212.4173.

[12]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[13]  L. Santos,et al.  Quantum filaments in dipolar Bose-Einstein condensates , 2016, 1601.04501.

[14]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[15]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[16]  L. Santos,et al.  Observation of Roton Mode Population in a Dipolar Quantum Gas , 2017, Nature Physics.

[17]  Leslie Greengard,et al.  A free-space adaptive fmm-based pde solver in three dimensions , 2011 .

[18]  Dieter Kraft,et al.  On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .

[19]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[20]  Ulrich Hohenester,et al.  Twin-atom beams , 2010, 1012.2348.

[21]  Tilman Pfau,et al.  Onset of a modulational instability in trapped dipolar Bose-Einstein condensates , 2017, 1711.07275.

[23]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[24]  A. Pelster,et al.  Quantum fluctuations in dipolar Bose gases , 2011, 1103.4128.

[25]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[26]  U. Hohenester,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes , 2014, 1409.2976.

[27]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[28]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[29]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[30]  T. Schumm,et al.  Interferometry with non-classical motional states of a Bose–Einstein condensate , 2014, Nature Communications.

[31]  John L. Bohn,et al.  Bogoliubov modes of a dipolar condensate in a cylindrical trap (13 pages) , 2006 .

[32]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[33]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[34]  Andreas Angerer,et al.  Smooth Optimal Quantum Control for Robust Solid-State Spin Magnetometry. , 2014, Physical review letters.

[35]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[36]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Masahito Ueda,et al.  d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.

[38]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[39]  Leslie Greengard,et al.  Fast convolution with free-space Green's functions , 2016, J. Comput. Phys..

[40]  Ulrich Hohenester,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Consideration of filter effects , 2007, 1409.2976.

[41]  Lukas Exl,et al.  A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions , 2016, Comput. Phys. Commun..

[42]  H. Saito Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose–Einstein Condensate Stabilized by Quantum Fluctuation , 2016, 1603.03148.

[43]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[44]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[45]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[46]  L. Santos,et al.  Quantum-Fluctuation-driven crossover from a dilute bose-einstein condensate to a macrodroplet in a dipolar quantum fluid , 2016, 1607.06613.

[47]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[48]  L. Santos,et al.  Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. , 2018, Physical review letters.

[49]  Ulrich Hohenester,et al.  OCTBEC - A Matlab toolbox for optimal quantum control of Bose-Einstein condensates , 2013, Comput. Phys. Commun..

[50]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[51]  Richard W. Johnson Higher order B-spline collocation at the Greville abscissae , 2005 .

[52]  Yong Zhang,et al.  Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation , 2015, J. Comput. Phys..

[53]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[54]  D. Matthes,et al.  Optimal control of Bose–Einstein condensates in three dimensions , 2015, 1507.07319.

[55]  Jacob Sherson,et al.  Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates , 2018, Physical Review A.

[56]  Philippe Chatelain,et al.  A high order solver for the unbounded Poisson equation , 2013, J. Comput. Phys..

[57]  J. C. Aguilar,et al.  High-order corrected trapezoidal quadrature rules for the coulomb potential in three dimensions , 2005 .

[58]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[59]  T. Maier,et al.  Emergence of Chaotic Scattering in Ultracold Er and Dy. , 2015, Physical review. X.

[60]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[61]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[62]  G. Biros,et al.  PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials , 2015 .

[63]  T. Pfau,et al.  Striped states in a many-body system of tilted dipoles , 2017, 1706.09388.

[64]  Tilman Pfau,et al.  Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.

[65]  Peter Pulay,et al.  Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory , 2002 .

[66]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .