Classification of inductive limits of 1-dimensional NCCW complexes

A classification result is obtained for the C*-algebras that are (stably isomorphic to) inductive limits of 1-dimensional noncommutative CW complexes with trivial $K_1$-group. The classifying functor Cu is defined in terms of the Cuntz semigroup of the unitization of the algebra. For the simple C*-algebras covered by the classification, Cu reduces to the ordered $K_0$-group, the cone of traces, and the pairing between them. As an application of the classification, it is shown that the crossed products by a quasi-free action $O_2\rtimes_\lambda \mathbb{R}$ are all isomorphic for a dense set of positive irrational numbers $\lambda$.

[1]  Shaloub Razak On the Classification of Simple Stably Projectionless C*-Algebras , 2002, Canadian Journal of Mathematics.

[2]  Hannes Thiel,et al.  THE CUNTZ SEMIGROUP AND COMPARISON OF OPEN PROJECTIONS , 2010, 1008.3497.

[3]  Søren Eilers,et al.  STABILITY OF ANTICOMMUTATION RELATIONS : AN APPLICATION OF NONCOMMUTATIVE CW COMPLEXES , 1998 .

[4]  Alex Kumjian,et al.  Simple Stably Projectionless C*-Algebras Arising as Crossed Products , 1996, Canadian Journal of Mathematics.

[5]  Andrew S. Toms Comparison Theory and Smooth Minimal C*-Dynamics , 2008, 0805.1688.

[6]  Andrew S. Toms K-theoretic rigidity and slow dimension growth , 2009, 0910.2061.

[7]  David E. Evans On {$O\sbn$} , 1980 .

[8]  Completions of monoids with applications to the Cuntz semigroup , 2010, 1003.2874.

[9]  Projections in free product C $^*$–algebras, II , 1997, math/9911009.

[10]  George A. Elliott The Classification Problem for Amenable C*-Algebras , 1995 .

[11]  M. Rørdam On the structure of simple C∗-algebras tensored with a UHF-algebra, II , 1991 .

[12]  Xinhui Jiang,et al.  A Classification of Simple Limits of Splitting Interval Algebras , 1997 .

[13]  G. Elliott,et al.  The cone of lower semicontinuous traces on a C*-algebra , 2008, 0805.3122.

[14]  Andrew S. Toms,et al.  K-Theory for operator algebras. Classification of C$^*$-algebras , 2009, 0902.3381.

[15]  The stable rank of some free product C*-algebras , 1996 .

[16]  Andrew J. Dean A Continuous Field of Projectionless C *-Algebras , 2001, Canadian Journal of Mathematics.

[17]  M. Chial,et al.  in simple , 2003 .

[18]  Nathanial P. Brown,et al.  The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras , 2006, math/0609182.

[19]  Mikael Rordam,et al.  The stable and the real rank of Z-absorbing C*-algebras , 2004 .

[20]  Wilhelm Winter,et al.  Decomposition rank and Z-stability , 2008, 0806.2948.

[21]  Wilhelm Winter,et al.  COVERING DIMENSION AND QUASIDIAGONALITY , 2002 .

[22]  G. Elliott,et al.  A Remark on Invariants for C*-Algebras of Stable Rank One , 2007, 0707.2220.

[23]  Wilhelm Winter,et al.  Strongly self-absorbing C*-algebras , 2005, math/0502211.

[24]  N. Brown,et al.  Isomorphism of Hilbert modules over stably finite C*-algebras , 2008, 0811.0958.

[25]  Classification of homomorphisms from $C_0(0,1]$ to a C*-algebra , 2009, 0905.0680.

[26]  Pullbacks, $C(X)$-algebras, and their Cuntz semigroup , 2011, 1101.4776.

[27]  M. Rørdam THE STABLE AND THE REAL RANK OF ${\mathcal Z}$-ABSORBING C*-ALGEBRAS , 2004 .

[28]  G. Elliott A Classification of Certain Simple C*-Algebras , 1993 .

[29]  Wilhelm Winter,et al.  The Jiang–Su algebra revisited , 2008, 0801.2259.

[30]  A. Kishimoto SIMPLE CROSSED PRODUCTS OF $C^{*}$ -ALGEBRAS BY LOCALLY COMPACT ABELIAN GROUPS , 1980 .

[31]  W. Winter Decomposition rank and $\mathcal{Z}$ -stability , 2010 .

[32]  Mikael Rrd Am THE STABLE AND THE REAL RANK OF Z-ABSORBING C -ALGEBRAS , 2004 .

[33]  George A. Elliott,et al.  Towards a theory of classification , 2007, 0711.3200.

[34]  Projections in Free Product C*-algebras , 1997, funct-an/9702016.

[35]  W. Winter,et al.  The nuclear dimension of C*-algebras , 2009, 0903.4914.

[36]  K. Tsang,et al.  On the positive tracial cones of simple stably projectionless C*-algebras , 2005 .

[37]  G. Elliott,et al.  The Cuntz semigroup as an invariant for C*-algebras , 2007, 0705.0341.

[38]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[39]  L. Robert,et al.  CUNTZ SEMIGROUPS OF IDEALS AND QUOTIENTS AND A GENERALIZED KASPAROV STABILIZATION THEOREM , 2007, 0710.5800.

[40]  Nathanial P. Brown,et al.  Three Applications of the Cuntz Semigroup , 2007 .