More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus

The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.

[1]  Anne-Kristin Kaster,et al.  Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea , 2011, Proceedings of the National Academy of Sciences.

[2]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[3]  Arnim Wiezer,et al.  Complete Genome Sequence of Methanothermobacter marburgensis, a Methanoarchaeon Model Organism , 2010, Journal of bacteriology.

[4]  Robert H. White,et al.  Cysteine Is Not the Sulfur Source for Iron-Sulfur Cluster and Methionine Biosynthesis in the Methanogenic Archaeon Methanococcus maripaludis* , 2010, The Journal of Biological Chemistry.

[5]  Anne-Kristin Kaster,et al.  Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. , 2010, Annual review of biochemistry.

[6]  J. Leigh,et al.  Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase , 2010, Proceedings of the National Academy of Sciences.

[7]  W. Whitman,et al.  Characterization of Energy-Conserving Hydrogenase B in Methanococcus maripaludis , 2010, Journal of bacteriology.

[8]  G. Fuchs,et al.  Autotrophic carbon fixation in archaea , 2010, Nature Reviews Microbiology.

[9]  Jiro Nomata,et al.  X-ray crystal structure of the light-independent protochlorophyllide reductase , 2010, Nature.

[10]  Mauro Majone,et al.  Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. , 2010, Bioresource technology.

[11]  Deenah Osman,et al.  Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. , 2010, Natural product reports.

[12]  J. Wiesner,et al.  RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. , 2010, Journal of the American Chemical Society.

[13]  K. Nealson Geomicrobiology: Sediment reactions defy dogma , 2010, Nature.

[14]  L. Nielsen,et al.  Electric currents couple spatially separated biogeochemical processes in marine sediment , 2010, Nature.

[15]  James C. Hu Faculty Opinions recommendation of Self versus non-self discrimination during CRISPR RNA-directed immunity. , 2010 .

[16]  R. Amann,et al.  Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. , 2010, Environmental microbiology.

[17]  Wei-Jun Yang,et al.  Isolation and characterization of a new strain of Methanothermobacter marburgensis DX01 from hot springs in China. , 2010, Anaerobe.

[18]  J. Leigh,et al.  Overlapping repressor binding sites regulate expression of the Methanococcus maripaludis glnK1 operon , 2010, Molecular microbiology.

[19]  William J. Kelly,et al.  The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions , 2010, PloS one.

[20]  Fedor V. Karginov,et al.  The CRISPR system: small RNA-guided defense in bacteria and archaea. , 2010, Molecular cell.

[21]  M. Rother,et al.  In vivo requirement of selenophosphate for selenoprotein synthesis in archaea , 2010, Molecular microbiology.

[22]  S. Ragsdale,et al.  Function of Ech Hydrogenase in Ferredoxin-Dependent, Membrane-Bound Electron Transport in Methanosarcina mazei , 2009, Journal of bacteriology.

[23]  O. Nureki,et al.  Mg2+‐dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis , 2009, The EMBO journal.

[24]  J. W. Peters,et al.  Identification and Characterization of a Novel Member of the Radical AdoMet Enzyme Superfamily and Implications for the Biosynthesis of the Hmd Hydrogenase Active Site Cofactor , 2009, Journal of bacteriology.

[25]  Eberhard Warkentin,et al.  Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase. , 2009, Biochemistry.

[26]  R. Conrad,et al.  The global methane cycle: recent advances in understanding the microbial processes involved. , 2009, Environmental microbiology reports.

[27]  Robert H. White,et al.  An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2',3'-cyclic phosphate in methanopterin biosynthesis. , 2009, Biochemistry.

[28]  S. Al-Karadaghi,et al.  The AAA(+) motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. , 2009, Journal of structural biology.

[29]  R. Mendel,et al.  Molybdenum cofactors, enzymes and pathways , 2009, Nature.

[30]  Sean D. Hooper,et al.  Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens , 2009, PloS one.

[31]  R. Amann,et al.  Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide , 2009, Environmental microbiology.

[32]  C. Brochier-Armanet,et al.  Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers , 2009, PLoS genetics.

[33]  D. Zamble,et al.  The "metallo-specific" response of proteins: a perspective based on the Escherichia coli transcriptional regulator NikR. , 2009, Dalton transactions.

[34]  B. Spira,et al.  Transcriptional Processing of the pst Operon of Escherichia coli , 2009, Current Microbiology.

[35]  Yan Zhang,et al.  Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization , 2009, BMC Genomics.

[36]  A. Guss,et al.  Differences in Hydrogenase Gene Expression between Methanosarcina acetivorans and Methanosarcina barkeri , 2009, Journal of bacteriology.

[37]  S. Yokoyama,et al.  Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. , 2009, Journal of molecular biology.

[38]  J. Boyd,et al.  Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function* , 2009, Journal of Biological Chemistry.

[39]  D. Graham,et al.  Archaeal ApbC/Nbp35 Homologs Function as Iron-Sulfur Cluster Carrier Proteins , 2008, Journal of bacteriology.

[40]  D. R. Palmer,et al.  Methanogen Homoaconitase Catalyzes Both Hydrolyase Reactions in Coenzyme B Biosynthesis* , 2008, Journal of Biological Chemistry.

[41]  R. Wirth,et al.  The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. , 2008, Environmental microbiology.

[42]  W. Whitman,et al.  Formate-Dependent H2 Production by the Mesophilic Methanogen Methanococcus maripaludis , 2008, Applied and Environmental Microbiology.

[43]  Y. Kamagata,et al.  Specific DNA Binding of a Potential Transcriptional Regulator, Inosine 5′-Monophosphate Dehydrogenase-Related Protein VII, to the Promoter Region of a Methyl Coenzyme M Reductase I-Encoding Operon Retrieved from Methanothermobacter thermautotrophicus Strain ΔH , 2008, Applied and Environmental Microbiology.

[44]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[45]  F. Widdel,et al.  Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. , 2008, Journal of the American Chemical Society.

[46]  Yan Zhang,et al.  Molybdoproteomes and evolution of molybdenum utilization. , 2008, Journal of molecular biology.

[47]  J. Leigh,et al.  Roles of Coenzyme F420-Reducing Hydrogenases and Hydrogen- and F420-Dependent Methylenetetrahydromethanopterin Dehydrogenases in Reduction of F420 and Production of Hydrogen during Methanogenesis , 2008, Journal of bacteriology.

[48]  Robert H. White,et al.  Molecular Insights into the Biosynthesis of the F420 Coenzyme* , 2008, Journal of Biological Chemistry.

[49]  D. Shin Preliminary structural studies on the MtxX protein from Methanococcus jannaschii. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[50]  Hideki Harada,et al.  Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. , 2008, International journal of systematic and evolutionary microbiology.

[51]  Seigo Shima,et al.  Methane as Fuel for Anaerobic Microorganisms , 2008, Annals of the New York Academy of Sciences.

[52]  D. Haft,et al.  Orphan SelD proteins and selenium-dependent molybdenum hydroxylases , 2008, Biology Direct.

[53]  Robert H. White,et al.  Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. , 2008, Biochemistry.

[54]  R. Hedderich,et al.  A cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. , 2007, Biochemistry.

[55]  J. Frère,et al.  The Bacillus licheniformis BlaP β‐lactamase as a model protein scaffold to study the insertion of protein fragments , 2007, Protein science : a publication of the Protein Society.

[56]  J. Leigh,et al.  Nitrogen regulation in bacteria and archaea. , 2007, Annual review of microbiology.

[57]  A. Joachimiak,et al.  Structure of an amide bond forming F(420):gamma-glutamyl ligase from Archaeoglobus fulgidus -- a member of a new family of non-ribosomal peptide synthases. , 2007, Journal of molecular biology.

[58]  S. Shima,et al.  Post‐translational modifications in the active site region of methyl‐coenzyme M reductase from methanogenic and methanotrophic archaea , 2007, The FEBS journal.

[59]  R. Pickersgill,et al.  Elucidation of Substrate Specificity in the Cobalamin (Vitamin B12) Biosynthetic Methyltransferases , 2007, Journal of Biological Chemistry.

[60]  H. Huber,et al.  A sodium ion‐dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus , 2007, The FEBS journal.

[61]  Jason Raymond,et al.  Expression and Association of Group IV Nitrogenase NifD and NifH Homologs in the Non-Nitrogen-Fixing Archaeon Methanocaldococcus jannaschii , 2007, Journal of bacteriology.

[62]  A. Majerník,et al.  Isolation and characterization of an amiloride-resistant mutant of Methanothermobacter thermautotrophicus possessing a defective Na+/H+ antiport. , 2007, FEMS microbiology letters.

[63]  Michael J Maroney,et al.  Nickel-specific response in the transcriptional regulator, Escherichia coli NikR. , 2007, Journal of the American Chemical Society.

[64]  Fuli Li,et al.  Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase , 2007, Journal of bacteriology.

[65]  P. Siguier,et al.  Insertion Sequence Diversity in Archaea , 2007, Microbiology and Molecular Biology Reviews.

[66]  S. Shima,et al.  Structure of coenzyme F420H2 oxidase (FprA), a di‐iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O , 2007, The FEBS journal.

[67]  R. Sawers,et al.  Maturation of [NiFe]-hydrogenases in Escherichia coli , 2007, BioMetals.

[68]  W. Hagen,et al.  Tungsten Transport Protein A (WtpA) in Pyrococcus furiosus: the First Member of a New Class of Tungstate and Molybdate Transporters , 2006, Journal of bacteriology.

[69]  R. Garrett,et al.  A putative viral defence mechanism in archaeal cells. , 2006, Archaea.

[70]  J. Escalante‐Semerena,et al.  The cbiS Gene of the Archaeon Methanopyrus kandleri AV19 Encodes a Bifunctional Enzyme with Adenosylcobinamide Amidohydrolase and α-Ribazole-Phosphate Phosphatase Activities , 2006, Journal of bacteriology.

[71]  W. Liesack,et al.  Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. , 2006, Current opinion in biotechnology.

[72]  A. Majerník,et al.  Methanogenesis is Ca2+ dependent in Methanothermobacter thermautotrophicus strain DeltaH. , 2006, FEMS microbiology letters.

[73]  Robert H. White,et al.  Identification of Lactaldehyde Dehydrogenase in Methanocaldococcus jannaschii and Its Involvement in Production of Lactate for F420 Biosynthesis , 2006, Journal of bacteriology.

[74]  R. Hedderich,et al.  Energy-Converting [NiFe] Hydrogenases: More than Just H2 Activation , 2006, Journal of Molecular Microbiology and Biotechnology.

[75]  I. Anderson,et al.  Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis , 2006, Journal of bacteriology.

[76]  Eric F. Johnson,et al.  A New Type of Sulfite Reductase, a Novel Coenzyme F420-dependent Enzyme, from the Methanarchaeon Methanocaldococcus jannaschii* , 2005, Journal of Biological Chemistry.

[77]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[78]  Yan Boucher,et al.  Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. , 2005, Archaea.

[79]  J. Keltjens,et al.  Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F420. , 2005, Microbiology.

[80]  Robert H. White,et al.  A Methanocaldococcus jannaschii Archaeal Signature Gene Encodes for a 5-Formaminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-Monophosphate Synthetase , 2005, Journal of Biological Chemistry.

[81]  Robert H. White,et al.  Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii. , 2005, Biochimica et biophysica acta.

[82]  S. Hedges,et al.  A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land , 2004, BMC Evolutionary Biology.

[83]  R. Thauer,et al.  Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid , 2004, Archives of Microbiology.

[84]  S. Shima,et al.  F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification , 2004, Archives of Microbiology.

[85]  Yi Xing,et al.  Negative selection pressure against premature protein truncation is reduced by both alternative splicing and diploidy , 2004, Genome Biology.

[86]  J. Escalante‐Semerena,et al.  CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Goffeau,et al.  The Archaeal P-Type ATPases , 2004, Journal of bioenergetics and biomembranes.

[88]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[89]  J. Escalante‐Semerena,et al.  A New Pathway for Salvaging the CoenzymeB12 Precursor Cobinamide in Archaea RequiresCobinamide-Phosphate Synthase (CbiB) EnzymeActivity , 2003, Journal of bacteriology.

[90]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[91]  Robert H. White,et al.  Glutathione synthetase homologs encode α-l-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Leigh,et al.  Function and Regulation of the Formate Dehydrogenase Genes of the Methanogenic Archaeon Methanococcus maripaludis , 2003, Journal of bacteriology.

[93]  O. Lenz,et al.  The hydrogen-sensing apparatus in Ralstonia eutropha. , 2002, Journal of molecular microbiology and biotechnology.

[94]  Robert H. White,et al.  Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. , 2002, Natural product reports.

[95]  T. Leisinger,et al.  The Genome of Archaeal Prophage ΨM100 Encodes the Lytic Enzyme Responsible for Autolysis ofMethanothermobacter wolfeii , 2001, Journal of bacteriology.

[96]  G. Gottschalk,et al.  The Na(+)-translocating methyltransferase complex from methanogenic archaea. , 2001, Biochimica et biophysica acta.

[97]  S. Shima,et al.  The Biosynthesis of Methylated Amino Acids in the Active Site Region of Methyl-coenzyme M Reductase* , 2000, The Journal of Biological Chemistry.

[98]  D. Graham,et al.  Identification of a Highly Diverged Class ofS-Adenosylmethionine Synthetases in the Archaea* , 2000, The Journal of Biological Chemistry.

[99]  J. Vorholt,et al.  The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. , 1999, Structure.

[100]  R. Hedderich,et al.  Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. , 1999, European journal of biochemistry.

[101]  R. Thauer,et al.  The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation , 1999, Molecular microbiology.

[102]  R. Thauer,et al.  The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme , 1998, Archives of Microbiology.

[103]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[104]  M. Lidstrom,et al.  C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. , 1998, Science.

[105]  B. Mukhopadhyay,et al.  Purification, Regulation, and Molecular and Biochemical Characterization of Pyruvate Carboxylase from Methanobacterium thermoautotrophicum Strain ΔH* , 1998, The Journal of Biological Chemistry.

[106]  R. Thauer,et al.  Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2 , 1998, Archives of Microbiology.

[107]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[108]  S. Shima,et al.  Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. , 1997, Science.

[109]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[110]  R. Thauer,et al.  Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. , 1997, European journal of biochemistry.

[111]  J. Reeve,et al.  Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH , 1997, Journal of bacteriology.

[112]  R. Thauer,et al.  The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum. Structures and transcriptional regulation. , 1996, European journal of biochemistry.

[113]  G. Gottschalk,et al.  Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. , 1996, European journal of biochemistry.

[114]  K. Altendorf,et al.  Low-affinity potassium uptake system in the archaeon Methanobacterium thermoautotrophicum: overproduction of a 31-kilodalton membrane protein during growth on low-potassium medium , 1996, Journal of bacteriology.

[115]  G. Vogels,et al.  Coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg belongs to the superfamily of adenylate-forming enzymes , 1996, Journal of bacteriology.

[116]  J. Reeve,et al.  Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome , 1995, Journal of bacteriology.

[117]  R. Thauer,et al.  Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum. , 1994, European journal of biochemistry.

[118]  R. Thauer,et al.  The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. , 1994, European journal of biochemistry.

[119]  J. Reeve,et al.  Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum delta H , 1994, Journal of bacteriology.

[120]  R. Thauer,et al.  Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum , 1994, Archives of Microbiology.

[121]  W. M. Vos,et al.  F1 and F3, two novel virulent, archael phages infecting different thermophilic strains of the genus Methanobacterium. , 1993 .

[122]  M. Kammler,et al.  Characterization of the ferrous iron uptake system of Escherichia coli , 1993, Journal of bacteriology.

[123]  J. Reeve,et al.  Identification of the mcrC gene product in Methanococcus vannielii. , 1993, FEMS microbiology letters.

[124]  W. M. Vos,et al.  Phylogenetic Analysis of Thermophilic Methanobacterium sp.: Evidence for a Formate-Utilizing Ancestor , 1993 .

[125]  B. Lindenbach,et al.  Component A2 of methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H: nucleotide sequence and functional expression by Escherichia coli , 1993, Journal of bacteriology.

[126]  J. Ferry,et al.  Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of the fdhC gene of Methanobacterium formicicum , 1992, Journal of bacteriology.

[127]  R. Thauer,et al.  Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. , 1992, European journal of biochemistry.

[128]  R. Thauer,et al.  Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum The mvhb gene product of the methylviologen‐reducing hydrogenase operon , 1992, FEBS letters.

[129]  G. Vogels,et al.  Ammonia assimilation and glutamate incorporation in coenzyme F420 derivatives ofMethanosarcina barkeri , 1991, Antonie van Leeuwenhoek.

[130]  L. Meile,et al.  Complete nucleotide sequence of plasmid pME2001 of Methanobacterium thermoautotrophicum (Marburg). , 1990, Nucleic acids research.

[131]  M. Jordan,et al.  Organization of Methanobacterium thermoautotrophicum bacteriophage ψ M1 DNA , 1989, Molecular and General Genetics MGG.

[132]  R. Tanner,et al.  Formate auxotroph of Methanobacterium thermoautotrophicum Marburg , 1989, Journal of bacteriology.

[133]  D. Studer,et al.  Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg , 1989, Archives of Microbiology.

[134]  R. Thauer,et al.  Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,17(3)-seco-F430-17(3)-acid as an intermediate. , 1987, European journal of biochemistry.

[135]  G. Gottschalk,et al.  Further studies on the distribution of cytochromes in methanogenic bacteria , 1986 .

[136]  T. Bobik,et al.  Unusual coenzymes of methanogenesis. , 1985, Annual review of biochemistry.

[137]  P. Schönheit,et al.  Potassium accumulation in growing Methanobacterium thermoautotrophicum and its relation to the electrochemical proton gradient , 1984, Archives of Microbiology.

[138]  R. Thauer,et al.  Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria , 1984, Archives of Microbiology.

[139]  B. Eikmanns,et al.  Propionate assimilation by methanogenic bacteria , 1983, Archives of Microbiology.

[140]  R. Thauer,et al.  Pyruvate assimilation by Methanobacterium thermoautotrophicum , 1983 .

[141]  R. Thauer,et al.  Hydrogenase from methanobacterium thermoautotrophicum, a nickel‐containing enzyme , 1981 .

[142]  R. Thauer,et al.  Relatedness of Strains ΔH and Marburg of Methanobacterium thermoautotrophicum , 1981 .

[143]  R. Thauer,et al.  Incorporation of methionine‐derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum , 1981 .

[144]  R. Thauer,et al.  Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[145]  R. Thauer,et al.  Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[146]  R. Thauer,et al.  Biosynthetic evidence for a nickel tetrapyrrole structure of factor F430 from Methanobacterium thermoautotrophicum , 1980, FEBS letters.

[147]  R. Thauer,et al.  Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[148]  R. Thauer,et al.  Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum , 1979, Archives of Microbiology.

[149]  R. Thauer,et al.  Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum , 1978, Archives of Microbiology.

[150]  J. Zeikus,et al.  Methanobacterium thermoautotrophicus sp. n., an Anaerobic, Autotrophic, Extreme Thermophile , 1972, Journal of bacteriology.

[151]  Da-Neng Wang,et al.  Structure and mechanism of a pentameric formate channel , 2010, Nature Structural &Molecular Biology.

[152]  E. E. L O G A N,et al.  Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis , 2009 .

[153]  Eric F. Johnson,et al.  A Novel Coenzyme F420 Dependent Sulfite Reductase and a Small Sulfite Reductase in Methanogenic Archaea , 2008 .

[154]  D. Rees,et al.  Structural Basis of Trans-Inhibition in a Molybdate / Tungstate ABC Transporter , 2008 .

[155]  Robert H. White,et al.  Molecular Insights into the Biosynthesis of the F 420 Coenzyme * , 2008 .

[156]  Seigo Shima,et al.  A third type of hydrogenase catalyzing H2 activation. , 2007, Chemical record.

[157]  August Böck,et al.  Maturation of hydrogenases. , 2006, Advances in microbial physiology.

[158]  M. Friedrich Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. , 2005, Methods in enzymology.

[159]  J. Vorholt,et al.  Molybdenum and tungsten enzymes in C1 metabolism. , 2002, Metal ions in biological systems.

[160]  S. Shima,et al.  Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. , 2002, Journal of bioscience and bioengineering.

[161]  K. Shanmugam,et al.  Molybdate transport. , 2001, Research in microbiology.

[162]  T. Leisinger,et al.  Comparative sequence analysis of plasmids pME2001 and pME2200 of methanothermobacter marburgensis strains Marburg and ZH3. , 2001, Plasmid.

[163]  E. Kremmer,et al.  Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis , 2000, Archives of Microbiology.

[164]  J. Reeve,et al.  Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanot , 2000, International journal of systematic and evolutionary microbiology.

[165]  R. Banerjee,et al.  The role of corrinoids in methanogenesis. , 1999 .

[166]  R. J. Williams,et al.  The natural selection of the chemical elements , 1997, Cellular and Molecular Life Sciences CMLS.

[167]  B. Kräutler,et al.  The corrinoid from Methanobacterium thermoautotrophicum (Marburg strain). Spectroscopic structure analysis and identification as Co beta-cyano-5'-hydroxybenzimidazolyl-cobamide (factor III). , 1987, European journal of biochemistry.

[168]  B. Kräutler,et al.  The corrinoid from Methanobacterium thermoautotrophicum (Marburg strain) , 1987 .

[169]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .