Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans

The purpose of this study was (a) evaluation of dynamic contrast‐enhanced MR imaging of normal bone marrow versus malignant bone marrow infiltrations in patients with proven B‐cell‐type chronic lymphocytic leukemia (B‐CLL) and (b) correlation with the clinical stage according to Binet (stages A, B, C) and response to therapy. Bone marrow imaging of the lumbar spine, pelvis, and proximal femurs was performed at 1.5 T in 45 patients without known malignancy and in 30 patients with B‐CLL. The differences between opposed‐phase and in‐phase dynamic gradient‐echo sequences before and up to 10 minutes after intravenous application of .1 mmol/kg body weight of gadolinium‐diethylenetriamine penta‐acetic acid (Gd‐DTPA) were evaluated in normal bone marrow. The contrast‐enhancement patterns of normal and malignant bone marrow were compared using the opposed‐phase dynamic gradient‐echo sequence. Ten of the patients with bone marrow infiltrations (Binet stage C) additionally underwent MR imaging follow‐up during therapy. Opposed‐phase gradient echo sequences demonstrated a signal decrease of normal bone marrow, and in‐phase gradient echo sequences demonstrated a signal increase of normal bone marrow after administration of Gd‐DTPA. The dynamic signal intensity time courses differed significantly (P < .05) between Binet stages B and C and controls as well as among the three Binet stages of B‐CLL. In the 10 patients followed during therapy, MR imaging sensitively demonstrated response (n = 6), nonresponse (n = 2), or relapse after initial response (n = 2). In out‐of‐phase imaging, both normal bone marrow and initial bone marrow infiltration in CLL stage Binet A show signal decrease after administration of contrast agent, whereas there is increase in signal intensity in higher‐grade bone marrow infiltration in Binet stage B or C disease. The signal loss of normal bone marrow in out‐of‐phase imaging is a phase effect rather than a T2* effect. The differentiation of initial from higher‐grade bone marrow infiltration on out‐of‐phase images relies solely on a shift in the fat/water ratio.

[1]  M. Dimopoulos,et al.  Multiple myeloma: MR patterns of response to treatment. , 1994, Radiology.

[2]  I. Wagner,et al.  Kernspintomographische Diagnostik fokaler Läsionen des roten Knochenmarks , 1994 .

[3]  Y. Amano,et al.  Gd‐DTPA Enhanced MRI of Reactive Hematopoietic Regions in Marrow , 1994, Journal of computer assisted tomography.

[4]  Susan Wray Imaging , 1994, Between Auschwitz and Tradition.

[5]  H. Kauczor,et al.  Knochenmarkbeteilgung bei M. Hodgkin: MR-Tomographie und Chemical-shift-Imaging , 1993 .

[6]  R. Tadmor,et al.  The role of T2-weighted gradient echo in MRI demonstration of spinal multiple myeloma. , 1993, Spine.

[7]  D. Huhn,et al.  Diffuse Demineralisation der Lendenwirbelsäule , 1993 .

[8]  A. Rahmouni,et al.  MR appearance of multiple myeloma of the spine before and after treatment. , 1993, AJR. American journal of roentgenology.

[9]  K. Krimmel,et al.  Kernspintomographische Differenzierung osteoporotisch- und tumorbedingter Wirbelkörperfrakturen , 1992 .

[10]  D. Huhn,et al.  [Magnetic resonance tomographic screening studies of the bone marrow with gradient-echo sequences. II. Gadolinium-DTPA-supported studies of plasmocytoma patients]. , 1992, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[11]  S. Grampp,et al.  Residuales und rekonvertiertes hämatopoetisches Knochenmark im distalen Femur , 1992 .

[12]  R. Felix,et al.  Kernspintomographische Screeninguntersuchungen des Knochenmarkes mit Gradientenecho-Sequenzen: , 1991 .

[13]  B. L. Neff,et al.  Bone marrow perfusion evaluated with gadolinium-enhanced dynamic fast MR imaging in a dog model. , 1991, Radiology.

[14]  A. Santoro,et al.  Magnetic resonance imaging in the initial staging of Hodgkin's disease and non-Hodgkin lymphoma. , 1991, European journal of radiology.

[15]  A. Rahmouni,et al.  Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. , 1990, Radiology.

[16]  K J Wolf,et al.  Rheumatoid arthritis: evaluation of hypervascular and fibrous pannus with dynamic MR imaging enhanced with Gd-DTPA. , 1990, Radiology.

[17]  A. Ho,et al.  MR-tomographische Quantifizierung von infiltrativen Knochenmarkveränderungen und Therapieverlaufskontrolle bei Patienten mit Haarzeil-Leukämie , 1990 .

[18]  S. Moore,et al.  Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. , 1990, Radiology.

[19]  E. Smit,et al.  Single-agent oral etoposide for elderly small cell lung cancer patients. , 1990, Seminars in oncology.

[20]  V. Diehl,et al.  Malignant lymphoma: bone marrow imaging versus biopsy. , 1989, Radiology.

[21]  H. Döhner,et al.  Magnetic resonance imaging of bone marrow in lymphoproliferative disorders: correlation with bone marrow biopsy , 1989, British journal of haematology.

[22]  R H Edwards,et al.  Bone marrow disorders: characterization with quantitative MR imaging. , 1989, Radiology.

[23]  B. Barlogie,et al.  Fludarabine: a new agent with major activity against chronic lymphocytic leukemia. , 1989, Blood.

[24]  W. Semmler,et al.  Knochenmarkveränderungen bei Morbus Hodgkin: MR-Tomographie und Chemical Shift Imaging , 1989 .

[25]  M. Reiser,et al.  Musculoskeletal neoplasms: static and dynamic Gd-DTPA--enhanced MR imaging. , 1989, Radiology.

[26]  M. Sarti,et al.  Bone marrow infiltration in hairy cell leukemia after interferon therapy detected by magnetic resonance imaging. , 1989, European journal of cancer & clinical oncology.

[27]  W A Murphy,et al.  Bone marrow imaging. , 1988, Radiology.

[28]  C. Thomsen,et al.  Prolonged bone marrow T1-relaxation in patients with polycythemia vera. , 1988, Magnetic resonance imaging.

[29]  J. Ruhlmann,et al.  [MR tomography in lymphatic and leukemic bone marrow infiltrations. A comparison with scintigraphy and conventional x-ray diagnosis]. , 1987, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[30]  A. Shields,et al.  Magnetic resonance imaging of bone marrow in hairy cell leukemia: correlation with clinical response to alpha-interferon. , 1987, Leukemia.

[31]  C. McKinstry,et al.  Bone marrow in leukemia and aplastic anemia: MR imaging before, during, and after treatment. , 1987, Radiology.

[32]  B. Glimelius,et al.  Magnetic Resonance Imaging in Diffuse Malignant Bone Marrow Diseases , 1987, Acta radiologica.

[33]  A. Shields,et al.  The detection of bone marrow involvement by lymphoma using magnetic resonance imaging. , 1987, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  M. Clouse,et al.  MR Imaging in Myelofibrosis , 1986, Journal of computer assisted tomography.

[35]  R L Ehman,et al.  Bone marrow in children with acute lymphocytic leukemia: MR relaxation times. , 1986, Radiology.

[36]  R. Daffner,et al.  MRI in the detection of malignant infiltration of bone marrow. , 1986, AJR. American journal of roentgenology.

[37]  H. Hricak,et al.  Bone marrow imaging: magnetic resonance studies related to age and sex. , 1985, Radiology.

[38]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.

[39]  E. Montserrat,et al.  Bone marrow histologic pattern--the best single prognostic parameter in chronic lymphocytic leukemia: a multivariate survival analysis of 329 cases. , 1984, Blood.

[40]  E. Montserrat,et al.  Chronic Lymphocytic Leukaemia: Proposals for a Revised Prognostic Staging System , 1981 .

[41]  M. Cristy,et al.  Active bone marrow distribution as a function of age in humans. , 1981, Physics in medicine and biology.

[42]  E. Montserrat,et al.  Prognostic Significance of Bone‐Marrow Patterns in Chronic Lymphocytic Leukaemia , 1981, British journal of haematology.

[43]  W. S. Snyder,et al.  Report of the task group on reference man , 1979, Annals of the ICRP.

[44]  C. Bloomfield,et al.  Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. , 1975, Annals of internal medicine.

[45]  S. Majumdar,et al.  [Residual and reconverted hematopoietic bone marrow in the distal femur. Spin-echo and opposed-phase gradient-echo MRT]. , 1992, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[46]  M. Keating Fludarabine phosphate in the treatment of chronic lymphocytic leukemia. , 1990, Seminars in oncology.

[47]  G. van Kaick,et al.  [Bone marrow changes in Hodgkin's disease: MR tomography and chemical shift imaging]. , 1989, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[48]  P. N. Trivedi,et al.  Value of correlation of cell type and T1 values to clinical magnetic resonance imaging of bone marrow. , 1988, Physiological chemistry and physics and medical NMR.

[49]  C Thomsen,et al.  Prolonged bone marrow T1-relaxation in acute leukaemia. In vivo tissue characterization by magnetic resonance imaging. , 1987, Magnetic resonance imaging.

[50]  H. Gralnick,et al.  Frequencies and patterns of bone marrow involvement in non‐hodgkin lymphomas: Observations on the value of bilateral biopsies , 1977, American journal of hematology.