Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes

[1]  F. Toma,et al.  Role of Hydrogen in Defining the n-Type Character of BiVO4 Photoanodes , 2016 .

[2]  Jih-Sheng Yang,et al.  Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation. , 2016, ACS applied materials & interfaces.

[3]  Matthew R. Shaner,et al.  Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes , 2016, Nature Communications.

[4]  Huijuan Liu,et al.  New Insights into Defect‐Mediated Heterostructures for Photoelectrochemical Water Splitting , 2016 .

[5]  Joaquin Resasco,et al.  TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment , 2016, ACS central science.

[6]  L. Tien,et al.  Type-II α-In2S3/In2O3 nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency , 2016 .

[7]  K. Sivula,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016 .

[8]  D. Emin,et al.  Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes. , 2016, The journal of physical chemistry letters.

[9]  Zhenyi Zhang,et al.  Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer , 2016, Scientific Reports.

[10]  Lucas H. Hess,et al.  Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. , 2015, Nano letters.

[11]  A. Hellman,et al.  The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction , 2015 .

[12]  Takehiko Kitamori,et al.  Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency , 2015, Scientific Reports.

[13]  Hongtao Yu,et al.  Improved Photocatalytic Performance of Heterojunction by Controlling the Contact Facet: High Electron Transfer Capacity between TiO2 and the {110} Facet of BiVO4 Caused by Suitable Energy Band Alignment , 2015 .

[14]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[15]  F. Toma,et al.  Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate , 2015 .

[16]  D. Emin,et al.  Anisotropic small-polaron hopping in W:BiVO4 single crystals , 2015 .

[17]  F. Toma,et al.  Electronic Structure of Monoclinic BiVO4 , 2014 .

[18]  Sang Ho Oh,et al.  Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures , 2014, Nature Communications.

[19]  James R. Durrant,et al.  Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation , 2014 .

[20]  Xinyong Li,et al.  Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene , 2014 .

[21]  H. Fu,et al.  Long‐Lived, Visible‐Light‐Excited Charge Carriers of TiO2/BiVO4 Nanocomposites and their Unexpected Photoactivity for Water Splitting , 2014 .

[22]  Junwang Tang,et al.  Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes , 2014 .

[23]  S. Obregón,et al.  A ternary Er3+-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance , 2014 .

[24]  Guoqiang Tan,et al.  Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts , 2013 .

[25]  A. Bard,et al.  Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. , 2013, Journal of the American Chemical Society.

[26]  F. J. Knorr,et al.  Spectroelectrochemical Photoluminescence of Trap States of Nanocrystalline TiO2 in Aqueous Media , 2013 .

[27]  Yiseul Park,et al.  Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation , 2013 .

[28]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[29]  Yichun Liu,et al.  Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. , 2013, Nanoscale.

[30]  G. P. Nagabhushana,et al.  Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation , 2013 .

[31]  Aron Walsh,et al.  Band alignment of rutile and anatase TiO 2 , 2013 .

[32]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[33]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[34]  G. Gigli,et al.  Hyperbranched anatase TiO2 nanocrystals: nonaqueous synthesis, growth mechanism, and exploitation in dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[35]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[36]  Yi Zheng,et al.  BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene , 2011 .

[37]  J. Turner,et al.  Doping properties of monoclinic BiVO 4 studied by first-principles density-functional theory , 2011 .

[38]  Nathan T. Hahn,et al.  Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films , 2011 .

[39]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[40]  Xinghua Li,et al.  Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. , 2010, ACS applied materials & interfaces.

[41]  Allen J. Bard,et al.  Rapid Screening of BiVO4-Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties , 2010 .

[42]  F. J. Knorr,et al.  Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase TiO2 : Influence of Contacting Solvent and Interphasial Electron Transfer , 2008 .

[43]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[44]  Lirong Zheng,et al.  Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. , 2007, Inorganic chemistry.

[45]  Wilford N. Hansen,et al.  Standard reference surfaces for work function measurements in air , 2001 .

[46]  E. A. Kraut,et al.  Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy , 1983 .

[47]  E. A. Kraut,et al.  Measurement of potential at semiconductor interfaces by electron spectroscopy , 1983 .

[48]  J. Herrmann,et al.  Platinum/titanium dioxide catalysts. A photoconductivity study of electron transfer from the ultraviolet-illuminated support to the metal and of the influence of hydrogen , 1983 .

[49]  E. A. Kraut,et al.  XPS measurement of GaAs–AlAs heterojunction band discontinuities: Growth sequence dependence , 1981 .