A variance-covariance structure to take into account repeated measurements and heteroscedasticity in growth modeling
暂无分享,去创建一个
Chhun-Huor Ung | Mathieu Fortin | Gaétan Daigle | J. Bégin | G. Daigle | M. Fortin | C. Ung | L. Archambault | Jean Bégin | Louis Archambault
[1] J.C.G. Goelz,et al. Development of a well-behaved site index equation: jack pine in north central Ontario , 1992 .
[2] R. Bailey,et al. A Multivariate Simultaneous Prediction System for Stand Growth and Yield with Fixed and Random Effects , 2001 .
[3] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[4] E. Vonesh,et al. Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.
[5] A. Gallant,et al. Nonlinear Statistical Models , 1988 .
[6] J. Dhôte,et al. A flexible radial increment model for individual trees in pure even-aged stands , 2004 .
[7] Timothy G. Gregorie,et al. Generalized Error Structure for Forestry Yield Models , 1987, Forest Science.
[8] Russ Wolfinger,et al. Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models , 1994, SIAM J. Sci. Comput..
[9] Timothy G. Gregoire,et al. Model Fitting Under Patterned Heterogeneity of Variance , 1989, Forest Science.
[10] Marie Davidian,et al. Nonlinear Models for Repeated Measurement Data , 1995 .
[11] Robert L. Bailey,et al. Modeling and Prediction of Forest Growth Variables Based on Multilevel Nonlinear Mixed Models , 2001 .
[12] Michael Clutter,et al. Multivariate Multilevel Nonlinear Mixed Effects Models for Timber Yield Predictions , 2004, Biometrics.
[13] H. Pretzsch,et al. A Re-Evaluation of Reineke's Rule and Stand Density Index , 2005, Forest Science.
[14] Valerie LeMay,et al. MSLS: a linear least squares technique for fitting a simultaneous system of equations with a generalized error structure , 1990 .
[15] F. J. Richards. A Flexible Growth Function for Empirical Use , 1959 .
[16] S. R. Searle,et al. Generalized, Linear, and Mixed Models , 2005 .
[17] L. Pienaar,et al. The Chapman-Richards Generalization of Von Bertalanffy's Growth Model for Basal Area Growth and Yield in Even - Aged Stands , 1973 .
[18] J. Hervé,et al. Changements de productivité dans quatre forêts de chênes sessiles depuis 1930 : une approche au niveau du peuplement , 2000 .
[19] Douglas A. Maguire,et al. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures , 2003 .
[20] D. Ruppert,et al. Transformation and Weighting in Regression , 1988 .
[21] Juha Lappi,et al. A non-linear hierarchical mixed model to describe tree height growth , 2006, European Journal of Forest Research.
[22] M. Westveld. Ecology and Silviculture of the Spruce-Fir Forests of Eastern North America , 1953 .
[23] N. Duan. Smearing Estimate: A Nonparametric Retransformation Method , 1983 .
[24] L. Skovgaard. NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .
[25] Richard Valliant,et al. Finite population sampling and inference : a prediction approach , 2000 .
[26] J. L. Clutter,et al. A Simultaneous Growth and Yield Model for Loblolly Pine , 1972 .
[27] B. Parresol. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress , 1993, Forest Science.
[28] R. Littell. SAS System for Mixed Models , 1996 .
[29] V. Carey,et al. Mixed-Effects Models in S and S-Plus , 2001 .
[30] C. Ung,et al. Relating Site Index to Ecological Factors in Black Spruce Stands: Tests of Hypotheses , 1999, Forest Science.
[31] H. Pretzscha,et al. The single tree-based stand simulator SILVA : construction , application and evaluation , 2002 .
[32] D. Bates,et al. Mixed-Effects Models in S and S-PLUS , 2001 .
[33] Robert L. Bailey,et al. Nonlinear Mixed Effects Modeling for Slash Pine Dominant Height Growth Following Intensive Silvicultural Treatments , 2001 .
[34] G. J. Mitchell,et al. Principles and procedures of statistics: A biometrical approach , 1981 .
[35] Jerome K. Vanclay,et al. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests , 1994 .
[36] Timothy G. Gregoire,et al. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements , 1995 .
[37] D. Bates,et al. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .
[38] P. Krestov,et al. Height growth of black spruce in British Columbia , 2002 .
[39] L. Bélanger,et al. Les coupes partielles : une alternative à la coupe à blanc dans les peuplements mixtes de sapin baumier et d'épinette rouge en termes de rendement , 2003 .