Noise management to achieve superiority in quantum information systems

Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue ‘Quantum technology for the 21st century’.

[1]  R. Sessoli,et al.  The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. , 2019, Journal of the American Chemical Society.

[2]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[3]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[4]  Simon J. Devitt,et al.  High-speed quantum networking by ship , 2014, Scientific Reports.

[5]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[6]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  R. Blatt,et al.  Enhanced quantum interface with collective ion-cavity coupling. , 2014, Physical review letters.

[8]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[9]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[10]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[11]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[12]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[13]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[14]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[15]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[16]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[17]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[18]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[19]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[20]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[21]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[22]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[23]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[24]  Simon J. Devitt,et al.  CLASSICAL PROCESSING REQUIREMENTS FOR A TOPOLOGICAL QUANTUM COMPUTING SYSTEM , 2009, 0906.0415.

[25]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[26]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[27]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[28]  R. Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.

[29]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[30]  Timothy P. Spiller,et al.  Towards a quantum information technology industry , 2006 .

[31]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[32]  Daniel A. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[33]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[34]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[35]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[36]  G. Milburn,et al.  Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[38]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[39]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[40]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[41]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[42]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[43]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[44]  P. Zoller,et al.  Photonic channels for quantum communication , 1998, Science.

[45]  G. Guo,et al.  PREVENTION OF DISSIPATION WITH TWO PARTICLES , 1997, quant-ph/9712005.

[46]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[47]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[48]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[49]  G. Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997, quant-ph/9703040.

[50]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[51]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .