A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones

Fault zones and fault systems have a key role in the development of the Earth’s crust. They control the mechanics and fluid flow properties of the crust, and the architecture of sedimentary deposits in basins. We review key advances in the study of the structure, mechanics and fluid flow properties of fault zones and fault systems. We emphasize that these three aspects of faults are intimately related and cannot be considered in isolation. For brevity, the review is concentrates on advances made primarily in the past 10 years, and also to fault zones in the brittle continental crust. Finally the paper outlines some key areas for future research in this field.

[1]  Richard R. Hillis,et al.  Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock , 2004 .

[2]  S. Uehara,et al.  Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan , 2004 .

[3]  H. Fossen,et al.  The impact of syn-faulting porosity reduction on damage zone architecture in porous sandstone: an outcrop example from the Moab Fault, Utah , 2005 .

[4]  G. D. Toro,et al.  Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps) , 2005 .

[5]  N. Davatzes,et al.  Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah , 2009 .

[6]  F. Chester Effects of temperature on friction: Constitutive equations and experiments with quartz gouge , 1994 .

[7]  T. Mitchell,et al.  The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile , 2009 .

[8]  A. Lachenbruch,et al.  Corrections to ‘Heat flow and energetics of the San Andreas Fault Zone’ and some additional comments on the relation between fault friction and observed heat flow , 1981 .

[9]  T. Mitchell,et al.  Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone , 2006, Nature.

[10]  L. Durlofsky,et al.  Computing Permeability of Fault Zones in Eolian Sandstone from Outcrop Measurements , 2002 .

[11]  D. Wiltschko,et al.  Microfracturing, paleostress and the growth of faults , 1994 .

[12]  J. Rice,et al.  Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels , 2009 .

[13]  C. Collettini,et al.  The internal structure of fault zones: fluid flow and mechanical properties , 2008 .

[14]  R. Allmendinger,et al.  Pseudo 3-D modeling of trishear fault-propagation folding , 2001 .

[15]  S. Hickman,et al.  Stress‐induced, time‐dependent fracture closure at hydrothermal conditions , 2004 .

[16]  J. Cembrano,et al.  Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile , 2005 .

[17]  G. D. Toro,et al.  Earthquake rupture dynamics frozen in exhumed ancient faults , 2005, Nature.

[18]  G. Axen Research Focus: Significance of large-displacement, low-angle normal faults , 2007 .

[19]  M. Zoback,et al.  Fault reactivation, leakage potential, and hydrocarbon column heights in the northern north sea , 2002 .

[20]  G. Tucker,et al.  Investigating the surface process response to fault interaction and linkage using a numerical modelling approach , 2006 .

[21]  D. Faulkner,et al.  Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy , 2010 .

[22]  F. Chester,et al.  Fracture surface energy of the Punchbowl fault, San Andreas system , 2005, Nature.

[23]  R. Holdsworth,et al.  A reappraisal of the Sibson‐Scholz fault zone model: The nature of the frictional to viscous (“brittle‐ductile”) transition along a long‐lived, crustal‐scale fault, Outer Hebrides, Scotland , 2001 .

[24]  R. Soliva,et al.  Geometry, scaling relations and spacing of vertically restricted normal faults , 2005 .

[25]  T. Heaton Evidence for and implications of self-healing pulses of slip in earthquake rupture , 1990 .

[26]  J. Walsh,et al.  Analysis of the relationship between displacements and dimensions of faults , 1988 .

[27]  Ben Dockrill,et al.  Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A. , 2010 .

[28]  Ian Davison,et al.  Damage zone geometry around fault tips , 1995 .

[29]  C. Wibberley,et al.  Earthquake slip weakening and asperities explained by thermal pressurization , 2005, Nature.

[30]  J. Urai,et al.  Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia , 2005 .

[31]  R. Holdsworth,et al.  High-Strain Zones: Structure and Physical Properties , 2005 .

[32]  P. Talwani,et al.  Seismogenic permeability, ks , 2007 .

[33]  Yehuda Ben-Zion,et al.  Pulverized rocks in the Mojave section of the San Andreas Fault Zone , 2006 .

[34]  J. P. Willson,et al.  Simulating brittle fault growth from linkage of preexisting structures , 2008 .

[35]  C. Marone,et al.  Instability of Deformation , 2002 .

[36]  D. Sanderson,et al.  The relationship between displacement and length of faults: a review , 2005 .

[37]  A. Nicol,et al.  An alternative model for the growth of faults , 2002 .

[38]  S. Cox,et al.  Evolution of strength recovery and permeability during fluid–rock reaction in experimental fault zones , 2002 .

[39]  C. Collettini,et al.  Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy , 2004, Journal of the Geological Society.

[40]  Takehito Suzuki,et al.  Quasi‐static fault slip on an interface between poroelastic media with different hydraulic diffusivity: A generation mechanism of afterslip , 2009 .

[41]  C. Collettini,et al.  Fault zone fabric and fault weakness , 2009, Nature.

[42]  P. Talwani,et al.  Seismogenic permeability , k s , 2007 .

[43]  C. Scholz Wear and gouge formation in brittle faulting , 1987 .

[44]  D. Lockner,et al.  Nucleation and growth of faults in brittle rocks , 1994 .

[45]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[46]  James P. Evans,et al.  Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults , 2002 .

[47]  T. Mitchell,et al.  On the structure and mechanical properties of large strike-slip faults , 2008 .

[48]  T. P. Harding Identification of Wrench Faults Using Subsurface Structural Data: Criteria and Pitfalls (1) , 1991 .

[49]  K. Mair,et al.  Laboratory results indicating complex and potentially unstable frictional behavior of smectite clay , 2001 .

[50]  R. Sibson,et al.  Seismogenic framework for hydrothermal transport and ore deposition , 2001 .

[51]  C. Collettini,et al.  Using footwall structures to constrain the evolution of low-angle normal faults , 2007, Journal of the Geological Society.

[52]  D. Lockner,et al.  Quantitative measure of the variation in fault rheology due to fluid‐rock interactions , 1998 .

[53]  C. Marone LABORATORY-DERIVED FRICTION LAWS AND THEIR APPLICATION TO SEISMIC FAULTING , 1998 .

[54]  Tom Manzocchi,et al.  Fault transmissibility multipliers for flow simulation models , 1999, Petroleum Geoscience.

[55]  John W. Geissman,et al.  Refining Rodinia: geologic evidence for the Australia-western U , 1999 .

[56]  T. Blenkinsop Relationships between faults, extension fractures and veins, and stress , 2008 .

[57]  K. McClay Thrust Tectonics and Hydrocarbon Systems , 2004 .

[58]  Z. Shipton,et al.  A conceptual model for the origin of fault damage zone structures in high-porosity sandstone , 2003 .

[59]  M. Nakatani,et al.  Frictional healing of quartz gouge under hydrothermal conditions: 1. Experimental evidence for solution transfer healing mechanism , 2004 .

[60]  P. Spudich,et al.  The Effect of Bandwidth Limitations on the Inference of Earthquake Slip-Weakening Distance from Seismograms , 2004 .

[61]  G. Dresen,et al.  Fracture process zone in granite: a microstructural analysis , 2001 .

[62]  James P. Evans,et al.  Internal structure and weakening mechanisms of the San Andreas Fault , 1993 .

[63]  Chris Marone,et al.  Particle-size distribution and microstructures within simulated fault gouge , 1989 .

[64]  Y. Guéguen,et al.  Permeability enhancement due to microcrack dilatancy in the damage regime , 2001 .

[65]  R. Lunn,et al.  Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock , 2010 .

[66]  James P. Evans,et al.  Fluid‐rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures , 1995 .

[67]  K. Mair,et al.  Deformation bands in sandstone: a review , 2007, Journal of the Geological Society.

[68]  C. Peach,et al.  High shear strain behaviour of synthetic muscovite fault gouges under hydrothermal conditions , 2008 .

[69]  C. Collettini,et al.  Aftershocks driven by a high-pressure CO2 source at depth , 2004, Nature.

[70]  J. Logan,et al.  Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric , 1987 .

[71]  James R. Rice,et al.  Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials , 2006 .

[72]  I. Szlufarska,et al.  Recent advances in single-asperity nanotribology , 2008 .

[73]  F. Chester,et al.  Letter sectionFoliated cataclasites , 1985 .

[74]  Ronald L. Biegel,et al.  The kinematics of gouge deformation , 1987 .

[75]  Z. Shipton,et al.  Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah , 2001 .

[76]  D. Sanderson,et al.  Fault damage zones , 2004 .

[77]  Michael J. Rymer,et al.  Talc-bearing serpentinite and the creeping section of the San Andreas fault , 2007, Nature.

[78]  A. Rosakis,et al.  An experimental study of the effect of off-fault damage on the velocity of a slip pulse , 2008 .

[79]  G. Rawling,et al.  Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types , 2001 .

[80]  C. Sammis,et al.  Relating Fault Mechanics to Fault Zone Structure , 2004 .

[81]  C. Wibberley,et al.  Recent advances in the understanding of fault zone internal structure: a review , 2008 .

[82]  G. Xie,et al.  Dip range for intracontinental reverse fault ruptures: Truth not stranger than friction? , 1998, Bulletin of the Seismological Society of America.

[83]  C. Wibberley,et al.  basin , France development of internal structure in normal fault zones : the The influence of layering and pre-existing joints on the service , 2008 .

[84]  John E. Vidale,et al.  Damage to the shallow Landers fault from the nearby Hector Mine earthquake , 2003, Nature.

[85]  M. Swanson Geometry and kinematics of adhesive wear in brittle strike-slip fault zones , 2005 .

[86]  R. Holdsworth Weak Faults--Rotten Cores , 2004, Science.

[87]  J. Rice,et al.  Rate and state dependent friction and the stability of sliding between elastically deformable solids , 2001 .

[88]  Robert E. Holdsworth,et al.  Development of interconnected talc networks and weakening of continental low-angle normal faults , 2009 .

[89]  C. Scholz,et al.  Precipitation sealing and diagenesis: 2. Theoretical analysis , 1998 .

[90]  C. Peach,et al.  Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution , 2000 .

[91]  T. Tullis,et al.  Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge , 1998 .

[92]  P. Sammonds,et al.  Horizontal strain-rates and throw-rates across breached relay zones, central Italy: implications for the preservation of throw deficits at points of normal fault linkage , 2009 .

[93]  Michael A. Wacker,et al.  Faulted joints: kinematics, displacement-length scaling relations and criteria for their identification , 2001 .

[94]  W. Dunne,et al.  Development of a dilatant damage zone along a thrust relay in a low-porosity quartz arenite , 2006 .

[95]  H. Noda Frictional constitutive law at intermediate slip rates accounting for flash heating and thermally activated slip process , 2008 .

[96]  R. Snieder,et al.  Geophysics: A moving fluid pulse in a fault zone , 2005, Nature.

[97]  N. Dawers,et al.  Displacement-length scaling and fault linkage , 1995 .

[98]  M. Cooke,et al.  Unlocking the effects of friction on fault damage zones , 2010 .

[99]  D. Lockner,et al.  Permeability reduction in granite under hydrothermal conditions , 2001 .

[100]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[101]  R. Schlische,et al.  Rift-Basin Structure and Its Influence on Sedimentary Systems , 2002 .

[102]  Frederick M. Chester,et al.  Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California , 1986 .

[103]  P. Boult,et al.  Using empirical geological rules to reduce structural uncertainty in seismic interpretation of faults , 2010 .

[104]  S. Berg,et al.  Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah , 2005 .

[105]  J. Rice Heating and weakening of faults during earthquake slip , 2006 .

[106]  P. Spudich,et al.  Earthquake fracture energy inferred from kinematic rupture models on extended faults , 2005 .

[107]  J. Shaw,et al.  Seismic Interpretation of Contractional Fault-Related Folds , 2005 .

[108]  C. Collettini,et al.  Architecture and mechanics of an active low‐angle normal fault: Alto Tiberina Fault, northern Apennines, Italy , 2007 .

[109]  A. Kronenberg,et al.  Experimental deformation of muscovite , 1993 .

[110]  J. Hinds,et al.  Field observation of fluid circulation patterns in a normal fault system , 2004 .

[111]  D. Elsworth,et al.  Fault zone restrengthening and frictional healing: The role of pressure solution , 2005 .

[112]  J. Rice,et al.  Thermal pressurization and onset of melting in fault zones , 2006 .

[113]  M. Oda,et al.  Damage growth and permeability change in triaxial compression tests of Inada granite , 2002 .

[114]  W. Ellsworth,et al.  Seismic Evidence for an Earthquake Nucleation Phase , 1995, Science.

[115]  Gregory C. Beroza,et al.  Properties of the seismic nucleation phase , 1996 .

[116]  Y. Ben‐Zion,et al.  Mechanics of grain‐size reduction in fault zones , 2008 .

[117]  V. Popov Earthquakes and Friction , 2010 .

[118]  J. Gerald,et al.  Permeability evolution in quartz fault gouges under hydrothermal conditions , 2007 .

[119]  Paul Segall,et al.  Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra Nevada, California , 1988 .

[120]  James P. Evans,et al.  The Geometry and Thickness of Deformation-band Fault Core and its Influence on Sealing Characteristics of Deformation-band Fault Zones , 2005 .

[121]  C. Mansfield,et al.  Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah , 1995 .

[122]  D. Goldsby,et al.  Low frictional strength of quartz rocks at subseismic slip rates , 2002 .

[123]  C. Marone,et al.  Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution , 2009 .

[124]  D. Sanderson,et al.  A Long Time Scale, High-Resolution Record of Displacement Accumulation on an Active Normal fault: Implications for Models of Slip Accumulation During Repeated Earthquakes. , 2006 .

[125]  S. Hall,et al.  Comparative microstructures of natural and experimentally produced clay-bearing fault gouges , 1986 .

[126]  J. Byerlee,et al.  Chapter 3 Frictional Strength and the Effective Pressure Law of Montmorillonite and lllite Clays , 1992 .

[127]  M. Nakatani,et al.  Frictional healing of quartz gouge under hydrothermal conditions: 2. Quantitative interpretation with a physical model , 2004 .

[128]  F. A. D. Silva,et al.  Evidence of hydraulic connectivity across deformation bands from field pumping tests: Two examples from Tucano Basin, NE Brazil , 2010 .

[129]  E. Rutter,et al.  Mechanistic interactions between deformation and metamorphism , 1995 .

[130]  D. Faulkner,et al.  Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? , 2001 .

[131]  D. Faulkner,et al.  The gas permeability of clay-bearing fault gouge at 20°C , 1998, Geological Society, London, Special Publications.

[132]  James D. Byerlee,et al.  An earthquake mechanism based on rapid sealing of faults , 1992, Nature.

[133]  B. Evans,et al.  Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions , 1997 .

[134]  M. Belayneh,et al.  Fluid flow partitioning between fractures and a permeable rock matrix , 2004 .

[135]  M. R. Gross,et al.  Normal fault growth in layered rocks at Split Mountain, Utah: influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling , 2002 .

[136]  C. Holyoke,et al.  The interaction between reaction and deformation: an experimental study using a biotite + plagioclase + quartz gneiss , 2006 .

[137]  Jin-Han Ree,et al.  Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition , 2007, Science.

[138]  Aaron Bansemer,et al.  Effective ice particle densities for cold anvil cirrus , 2004 .

[139]  R. Wintsch,et al.  Fluid‐rock reaction weakening of fault zones , 1995 .

[140]  K. O'Hara Reaction weakening and emplacement of crystalline thrusts: Diffusion control on reaction rate and strain rate , 2007 .

[141]  D. Lockner,et al.  The Coefficient of Friction of Chrysotile Gouge at Seismogenic Depths , 2004 .

[142]  G. Roberts,et al.  Localization of Quaternary slip rates in an active rift in 105 years: An example from central Greece constrained by 234U‐230Th coral dates from uplifted paleoshorelines , 2009 .

[143]  D. Mccarty,et al.  Structure, petrophysics, and diagenesis of shale entrained along a normal fault at Black Diamond Mines, California—Implications for fault seal , 2005 .

[144]  J. Brune,et al.  Heat Flow, Stress, and Rate of Slip along the San Andreas Fault, , 1969 .

[145]  M. Zoback,et al.  A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth , 2006 .

[146]  Sylvain Barbot,et al.  Seismic and geodetic evidence for extensive, long-lived fault damage zones , 2009 .

[147]  J. Solum,et al.  Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior , 2009 .

[148]  Robert J. Knipe,et al.  Empirical estimation of fault rock properties , 2002 .

[149]  J. Dieterich,et al.  Direct observation of frictional contacts: New insights for state-dependent properties , 1994 .

[150]  M. Hettema,et al.  Geomechanical integrity of sealing faults during depressurisation of the Statfjord Field , 2010 .

[151]  J. Byerlee,et al.  Model for episodic flow of high-pressure water in fault zones before earthquakes , 1993 .

[152]  D. Grauls,et al.  Mechanical compaction of sand/clay mixtures , 2002 .

[153]  Stephen H. Hickman,et al.  Introduction to Special Section: Mechanical Involvement of Fluids in Faulting , 1995 .

[154]  R. Schlische,et al.  An experimental study of the secondary deformation produced by oblique-slip normal faulting , 2002 .

[155]  J. Rice,et al.  Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation , 2006 .

[156]  L. Jolivet,et al.  Analysis of continental midcrustal strain localization induced by microfracturing and reaction‐softening , 2003 .

[157]  M. Zoback,et al.  Stress orientations and magnitudes in the SAFOD pilot hole , 2004 .

[158]  P. Adler,et al.  Fluid flow triggered migration of events in the 1989 Dobi Earthquake sequence of central Afar , 1997 .

[159]  E. Rutter,et al.  The effect of temperature, the nature of the pore fluid, and subyield differential stress on the permeability of phyllosilicate-rich fault gouge , 2003 .

[160]  D. Cowan,et al.  Downdip segmentation of strike-slip fault zones in the brittle crust , 2009 .

[161]  G. Tucker,et al.  Decoding temporal and spatial patterns of fault uplift using transient river long profiles , 2008 .

[162]  Francesco Salvini,et al.  Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil , 2010 .

[163]  J. Walsh,et al.  Outcrop Studies of Shale Smears on Fault Surface , 2009 .

[164]  D. Lockner,et al.  Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening , 2008 .

[165]  Toshihiko Shimamoto,et al.  Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle , 2004 .

[166]  J. Rice,et al.  Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture , 1998, Bulletin of the Seismological Society of America.

[167]  J. Cosgrove,et al.  Forced Folds and Fractures , 2000 .

[168]  Robert J. Knipe,et al.  Permeability scaling properties of fault damage zones in siliclastic rocks , 2004 .

[169]  D. Sanderson,et al.  Displacements, segment linkage and relay ramps in normal fault zones , 1991 .

[170]  R. Sibson Conditions for fault-valve behaviour , 1990, Geological Society, London, Special Publications.

[171]  S. Janecke,et al.  Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A , 1998 .

[172]  James P. Evans,et al.  Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults , 2000 .

[173]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[174]  B. S. Brister,et al.  Structure, stratigraphy, and hydrocarbon system of a Pennsylvanian pull-apart basin in north-central Texas , 2002 .

[175]  J. Dieterich,et al.  Implications of fault constitutive properties for earthquake prediction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[176]  T. Tullis,et al.  THE EFFECT OF FAULT SLIP ON PERMEABILITY AND PERMEABILITY ANISOTROPY IN QUARTZ GOUGE , 1998 .

[177]  François Renard,et al.  How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner , 1999 .

[178]  K. Tadokoro,et al.  Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration , 2000 .

[179]  C. Scholz Earthquakes and friction laws , 1998, Nature.

[180]  John R. Underhill,et al.  Linked sequence stratigraphic and structural evolution of propagating normal faults , 1997 .

[181]  Richard H. Sibson,et al.  Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand , 2004 .

[182]  Hiroo Kanamori,et al.  The physics of earthquakes , 2001 .

[183]  C. Spiers,et al.  Experimental investigation into the microstructural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring pressure solution , 2001 .

[184]  D. Faulkner,et al.  On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain , 2001 .

[185]  Stephen R. Brown,et al.  Fluid permeability of deformable fracture networks , 1997 .

[186]  J. Chéry,et al.  A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements , 2004 .

[187]  T. Wong,et al.  Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2 , 2006 .

[188]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[189]  C. Scholz,et al.  Healing and sealing of a simulated fault gouge under hydrothermal conditions: Implications for fault healing , 1998 .

[190]  Pradeep Talwani,et al.  In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina , 1999 .

[191]  T. Hirose,et al.  Extreme dynamic weakening of faults during dehydration by coseismic shear heating , 2007 .

[192]  J. Suppe,et al.  Geometry and kinematics of fault-bend folding , 1983 .

[193]  Stephen R. Brown,et al.  Experimental observation of fluid flow channels in a single fracture , 1998 .

[194]  M. Nakatani Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology , 2001 .

[195]  François Renard,et al.  A pressure solution creep law for quartz from indentation experiments , 2009 .

[196]  E. Kirby,et al.  Frictional properties of natural fault gouge from a low‐angle normal fault, Panamint Valley, California , 2007 .

[197]  A. Nicol,et al.  A geometric model of fault zone and fault rock thickness variations , 2009 .

[198]  C. Spiers,et al.  Origin and mechanical significance of foliated cataclastic rocks in the cores of crustal-scale faults: Examples from the Median Tectonic Line, Japan , 2006 .

[199]  C. Scholz,et al.  Precipitation sealing and diagenesis: 1. Experimental results , 1998 .

[200]  T. Mitchell,et al.  Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones , 2008 .

[201]  Graham Yielding,et al.  Using calibrated shale gouge ratio to estimate hydrocarbon column heights , 2003 .

[202]  E. Rutter,et al.  Experimental deformation of muscovite shear zones at high temperatures under hydrothermal conditions and the strength of phyllosilicate-bearing faults in nature , 2006 .

[203]  D. Lockner,et al.  Permeability differences between surface-derived and deep drillhole core samples , 1994 .

[204]  Brian Kilgore,et al.  Scaling of the critical slip distance for seismic faulting with shear strain in fault zones , 1993, Nature.

[205]  William W Rubey,et al.  ROLE OF FLUID PRESSURE IN MECHANICS OF OVERTHRUST FAULTING I. MECHANICS OF FLUID-FILLED POROUS SOLIDS AND ITS APPLICATION TO OVERTHRUST FAULTING , 1959 .

[206]  François Renard,et al.  Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults , 2000 .

[207]  S. Tindall,et al.  Monocline development by oblique-slip fault-propagation folding: the East Kaibab monocline, Colorado Plateau, Utah , 1999 .

[208]  L. A. Reinen Slip styles in a Spring‐Slider Model with a laboratory‐derived constitutive law for serpentinite , 2000 .

[209]  R. Lunn,et al.  Modeling the heterogeneous hydraulic properties of faults using constraints from reservoir-induced seismicity , 2005 .

[210]  D. Grauls,et al.  Quantitative fault seal assessment in hydrocarbon- compartmentalised structures using fluid pressure data , 2002 .

[211]  James D. Byerlee,et al.  Friction, overpressure and fault normal compression , 1990 .

[212]  N. Christie‐Blick,et al.  Deformation and Basin Formation Along Strike-Slip Faults , 1985 .

[213]  R. Sibson,et al.  Normal faults, normal friction? , 2001 .

[214]  J. Urai,et al.  Clay smear in normal fault zones – The effect of multilayers and clay cementation in water-saturated model experiments , 2010 .

[215]  M. Zoback,et al.  How faulting keeps the crust strong , 2000 .

[216]  T. Shimamoto,et al.  Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes , 2006, Science.

[217]  Albert Genter,et al.  Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations , 2005 .

[218]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[219]  J. Cartwright,et al.  Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, Eastern Mediterranean , 2008 .

[220]  C. Wibberley,et al.  Quantifying orthoclase and albite muscovitisation sequences in fault zones , 2000 .

[221]  Mark A. Knackstedt,et al.  Principles of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems , 2001 .

[222]  E. Ishii,et al.  Relationship between fault growth mechanism and permeability variations with depth of siliceous mudstones in northern Hokkaido, Japan , 2010 .

[223]  J. Ampuero,et al.  Earthquake nucleation on rate and state faults - Aging and slip laws , 2008 .

[224]  M. Cocco,et al.  A thermal pressurization model for the spontaneous dynamic rupture propagation on a three‐dimensional fault: 2. Traction evolution and dynamic parameters , 2006 .

[225]  D. Faulkner A model for the variation in permeability of clay‐bearing fault gouge with depth in the brittle crust , 2004 .

[226]  D. Lockner,et al.  Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals , 2004 .

[227]  C. Wibberley,et al.  Evolution of cataclastic faulting in high-porosity sandstone, Bassin du Sud-Est, Provence, France , 2010 .

[228]  I. Main,et al.  Fault sealing during deformation-band growth in porous sandstone , 2000 .

[229]  C. Childs,et al.  The 3D geometry of small-scale relay zones between normal faults in soft sediments , 2008 .

[230]  K. Masuda,et al.  Effects of clay content on the frictional strength and fluid transport property of faults , 2007 .

[231]  C. Wibberley,et al.  Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan , 2003 .

[232]  R. Schlische,et al.  Normal-fault development during two phases of non-coaxial extension: An experimental study , 2010 .

[233]  D. Ferrill,et al.  Stressed Rock Strains Groundwater at Yucca Mountain, Nevada , 1999 .

[234]  Z. Shipton,et al.  Structural Controls on Leakage from a Natural CO2 Geologic Storage Site – Central Utah, USA , 2009 .

[235]  R. Schlische Geometry and Origin of Fault-Related Folds in Extensional Settings , 1995 .

[236]  A. Niemeijer,et al.  The nature and importance of phyllonite development in crustal-scale fault cores : an example from the Median Tectonic Line, Japan. , 2006 .

[237]  C. Scholz,et al.  The process zone: A microstructural view of fault growth , 1998 .

[238]  F. Chester,et al.  Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California , 2003 .

[239]  Chris Marone,et al.  Effect of humidity on granular friction at room temperature , 2002 .

[240]  Toshihiko Shimamoto,et al.  High‐velocity frictional properties of gabbro , 1997 .

[241]  B. Evans,et al.  Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures , 2008 .

[242]  B. Freeman,et al.  Quantitative Fault Seal Prediction , 1997 .

[243]  S. Shapiro,et al.  Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site , 1997 .

[244]  James P. Evans Thickness-Displacement Relationships for Fault Zones , 1990 .

[245]  O. Oncken,et al.  Evolution of a fault surface from 3D attribute analysis and displacement measurements , 2008 .

[246]  C. Collettini,et al.  Fault zone architecture and deformation processes within evaporitic rocks in the upper crust , 2008 .

[247]  J. Petit,et al.  Field evidences for the role of static friction on fracture orientation in extensional relays along strike-slip faults: Comparison with photoelasticity and 3-D numerical modeling , 2010 .

[248]  A. Aydin,et al.  The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics , 2007 .

[249]  D. Faulkner,et al.  Comparisons of water and argon permeability in natural clay‐bearing fault gouge under high pressure at 20°C , 2000 .

[250]  M. Clennell,et al.  THE IMPORTANCE OF OVERPRESSURE TIMING AND PERMEABILITY EVOLUTION IN FINE-GRAINED SEDIMENTS UNDERGOING SHEAR , 1998 .

[251]  J. Caine,et al.  Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada , 2010 .

[252]  R. Sibson Rupturing in overpressured crust during compressional inversion—the case from NE Honshu, Japan , 2009 .

[253]  P. Kollias,et al.  Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise , 2004 .

[254]  James P. Evans,et al.  Strike-Slip Fault Terminations at Seismogenic Depths: The Structure and Kinematics of the Glacier Lakes Fault, Sierra Nevada United States , 2008 .

[255]  K. Raven,et al.  Groundwater mixing dynamics at a Canadian Shield mine , 2000 .

[256]  T. Shimamoto,et al.  Internal structure and permeability of the Nojima fault, southwest Japan , 2008 .

[257]  Jerry P. Fairley,et al.  Modeling fluid flow in a heterogeneous, fault‐controlled hydrothermal system , 2009 .

[258]  W. Ellsworth,et al.  Scientific Drilling Into the San Andreas Fault Zone , 2010 .

[259]  T. Dewers,et al.  Gouge formation by dynamic pulverization during earthquake rupture [rapid communication] , 2005 .

[260]  R. Lunn,et al.  How thick is a fault? Fault displacement-thickness scaling revisited , 2006 .

[261]  G. Mandl,et al.  The Role Of Faults In Hydrocarbon Migration And Trapping In Nigerian Growth Fault Structures , 1978 .

[262]  C. Wibberley Initiation of basement thrust detachments by fault-zone reaction weakening , 2005, Geological Society, London, Special Publications.

[263]  A thermal pressurization model for the spontaneous dynamic rupture propagation on a 3–D fault: Part I – Methodological approach , 2005 .

[264]  C. Marone,et al.  Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts , 2003 .

[265]  T. Tullis,et al.  Permeability anisotropy and pressure dependency of permeability in experimentally sheared gouge materials , 1999 .

[266]  D. Faulkner,et al.  Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge , 2008 .

[267]  A. Benedicto,et al.  Structural evolution and permeability of normal fault zones in highly porous carbonate rocks , 2006 .

[268]  S. Hickman,et al.  Kinetics of pressure solution at halite‐silica interfaces and intergranular clay films , 1995 .

[269]  Urban S. Allan,et al.  Model for Hydrocarbon Migration and Entrapment Within Faulted Structures , 1989 .

[270]  E. Screaton,et al.  Permeabilities, fluid pressures, and flow rates in the Barbados Ridge Complex , 1990 .

[271]  H. Kanamori,et al.  Energy Partitioning During an Earthquake , 2006 .

[272]  E. Tinti,et al.  Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes , 2009 .

[273]  C. H. Scholz,et al.  The critical slip distance for seismic faulting , 1988, Nature.

[274]  S. Martel,et al.  Development of strike-slip faults from dikes, Sequoia National Park, California , 2005 .