Evolution of median fin modules in the axial skeleton of fishes.

Detailed examples of how hierarchical assemblages of modules change over time are few. We found broadly conserved phylogenetic patterns in the directions of development within the median fins of fishes. From these, we identify four modules involved in their positioning and patterning. The evolutionary sequence of their hierarchical assembly and secondary dissociation is described. The changes in these modules during the evolution of fishes appear to be produced through dissociation, duplication and divergence, and co-option. Although the relationship between identified median fin modules and underlying mechanisms is unclear, Hox addresses may be correlated. Comparing homologous gene expression and function in various fishes may test these predictions.The earliest actinopterygians likely had dorsal and anal fins that were symmetrically positioned via a positioning module. The common patterning (differentiation) of skeletal elements within the dorsal and anal fins may have been set into motion by linkage to this positioning module. Frequent evolutionary changes in dorsal and anal fin position indicate a high level of dissociability of the positioning module from the patterning module. In contrast, the patterning of the dorsal and anal fins remains linked: In nearly all fishes, the endo- and exoskeletal elements of the two fins co-differentiate. In all fishes, the exoskeletal fin rays differentiate in the same directions as the endoskeletal supports, indicating complete developmental integration. In acanthopterygians, a new first dorsal fin module evolved via duplication and divergence. The median fins provide an example of how basic modularity is maintained over 400 million years of evolution.

[1]  R. Raff,et al.  Resynthesizing evolutionary and developmental biology. , 1996, Developmental biology.

[2]  Sean B. Carroll,et al.  Homeotic genes and the regulation and evolution of insect wing number , 1995, Nature.

[3]  Peter B. Moyle,et al.  Fishes: An Introduction to Ichthyology , 1982 .

[4]  A. Burke,et al.  Hox genes and the global patterning of the somitic mesoderm. , 2000, Current topics in developmental biology.

[5]  M. V. Lebour The Larval and Post-Larval Stages of the Pilchard, Sprat and Herring from Plymouth District , 1921, Journal of the Marine Biological Association of the United Kingdom.

[6]  Paula M. Mabee Supraneural and Predorsal Bones in Fishes: Development and Homologies , 1988 .

[7]  C. Tabin,et al.  Analysis of Hox gene expression in the chick limb bud. , 1996, Development.

[8]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[9]  Edwin S. Goodrich,et al.  Studies on the Structure and Development of Vertebrates , 1958 .

[10]  L. Joly,et al.  Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. , 1998, Development.

[11]  G. D. Johnson,et al.  Chapter 12 – Relationships of Lower Euteleostean Fishes , 1996 .

[12]  P. Holland,et al.  Hox genes and chordate evolution. , 1996, Developmental biology.

[13]  Lynne R. Parenti,et al.  Chapter 16 – Phylogenetic Significance of the Pectoral-Pelvic Fin Association in Acanthomorph Fishes: A Reassessment Using Comparative Neuroanatomy , 1996 .

[14]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[15]  M. Westerfield,et al.  Coordinate embryonic expression of three zebrafish engrailed genes. , 1992, Development.

[16]  Craig Nelson,et al.  Hox genes and the evolution of vertebrate axial morphology. , 1995, Development.

[17]  E. Balart Development of median and paired fin skeleton of Paralichthys olivaceus (Pleuronectiformes: Paralichthyidae). , 1985 .

[18]  C. Nüsslein-Volhard,et al.  Genetic analysis of fin formation in the zebrafish, Danio rerio. , 1996, Development.

[19]  D. Duboule,et al.  Teleost HoxD and HoxA genes: comparison with tetrapods and functional evolution of the HOXD complex , 1996, Mechanisms of Development.

[20]  Greg Gibson,et al.  Axial variation in the threespine stickleback: genetic and environmental factors , 1999 .

[21]  A. Lumsden,et al.  Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  G. Gibson,et al.  Axial variation in the threespine stickleback: relationship to Hox gene expression , 1999, Development Genes and Evolution.

[23]  M. Stiassny,et al.  Interrelationships of fishes , 1997 .

[24]  E. Goodrich Memoirs: Notes on the Development, Structure, and Origin of the Median and Paired Fins of Fish , 1906 .

[25]  D. Thieffry,et al.  Modularity in development and evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  T. Potthoff,et al.  Osteological development of the snook, Centropomus uncedimalis (Teleostei, Centropomidae) , 1993 .

[27]  G. Wagner HOMOLOGUES, NATURAL KINDS AND THE EVOLUTION OF MODULARITY , 1996 .

[28]  W. Arthur,et al.  Segments, limbs, homology, and co‐option , 1999, Evolution & development.

[29]  Paula M. Mabee Phylogenetic interpretation of ontogenetic change: sorting out the actual and artefactual in an empirical case study of centrarchid fishes , 1993 .

[30]  J. Dunn The utility of developmental osteology in taxonomic and systematic studies of teleost larvae : a review , 1983 .

[31]  T. Potthoff,et al.  CARTILAGE AND BONE DEVELOPMENT IN SCOMBROID FISHES , 1986 .

[32]  A. Wood,et al.  An analysis of in vivo cell migration during teleost fin morphogenesis. , 1984, Journal of cell science.

[33]  M. Matsuoka Development of Vertebral Column and Caudal Skeleton of the Red Sea Bream, Pagrus major , 1982 .

[34]  H. Kohno,et al.  Early development of fin-supports ani fin-rays in the milkfishChanos chanos , 1986 .

[35]  F. Young,et al.  Description of larval and juvenile yellowtail damselfish, Microspathodon chrysurus, pomacentridae, and their osteological development , 1987 .

[36]  S. Carroll,et al.  Out on a Limb: Parallels in Vertebrate and Invertebrate Limb Patterning and the Origin of Appendages' , 1999 .

[37]  E. Balart Development of the vertebral column, fins and fin supports in the Japanese anchovy, Engraulis japonicus (Clupeiformes: Engraulididae) , 1995 .

[38]  S. Gould The Shape of Life , 1996 .

[39]  G. Johnson,et al.  Early Osteological Development of White Perch and Striped Bass with Emphasis on Identification of Their Larvae , 1980 .

[40]  D. Power,et al.  Development of the pectoral, pelvic, dorsal and anal fins in cultured sea bream , 1999 .

[41]  M. Coates,et al.  The origin of vertebrate limbs. , 1994, Development (Cambridge, England). Supplement.

[42]  S. Gemballa,et al.  On the anatomy and development of the vertebral column and pterygiophores in Polypterus senegalus CUVIER, 1829 («Pisces», Polypteriformes) , 1992 .

[43]  I. Ruvinsky,et al.  Genetic and developmental bases of serial homology in vertebrate limb evolution. , 2000, Development.

[44]  George V. Lauder,et al.  The evolution and interrelationships of the actinopterygian fishes , 1983 .

[45]  G. Weisel Early ossification in the skeleton of the sucker (Catostomus macrocheilus) and the guppy (Poecilia reticulata) , 1967, Journal of morphology.

[46]  P. L. Shafland,et al.  Larval Development of Snook, Centropomus undecimalis (Pisces: Centropomidae) , 1982 .

[47]  Peter Gruss,et al.  Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid , 1991, Cell.

[48]  K. Weiss Duplication with variation: Metameric logic in evolution from genes to morphology , 1990 .

[49]  J. Eisen,et al.  Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. , 1997, Development.

[50]  S. Schulte-Merker,et al.  The development of the paired fins in the Zebrafish (Danio rerio) , 1998, Mechanisms of Development.

[51]  Virginia L. Apriet EARLY DEVELOPMENT OF FIVE CARANGID FISHES OF THE GULF OF MEXICO AND THE SOUTH ATLANTIC COAST OF THE UNITED STATES , 1974 .

[52]  S. Carroll,et al.  Fossils, genes and the evolution of animal limbs , 1997, Nature.

[53]  D. Power,et al.  Development of osteological structures in the sea bream: vertebral column and caudal fin complex , 1998 .

[54]  C. Logan,et al.  The role of Engrailed in establishing the dorsoventral axis of the chick limb. , 1997, Development.

[55]  F. Young,et al.  Description of porkfish larvae (Anisotremus virginicus, Haemulidae) and their osteological development , 1984 .

[56]  G. Gibson,et al.  Expression patterns of threespine stickleback Hox genes and insights into the evolution of the vertebrate body axis , 1999, Development Genes and Evolution.

[57]  Bruce B. Collette,et al.  The Diversity of Fishes , 1997 .

[58]  M. Cohn,et al.  Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution , 1998 .

[59]  M. Matsuoka Osteological Development in the Red Sea Bream, Pagrus major , 1985 .

[60]  V. Prince,et al.  Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. , 2001, Development.