Robust Extraction of Urban Land Cover Information From HSR Multi-Spectral and LiDAR Data

This paper focuses on the description and demonstration of a simple, but effective object-based image analysis (OBIA) approach to extract urban land cover information from high spatial resolution (HSR) multi-spectral and light detection and ranging (LiDAR) data. Particular emphasis is put on the evaluation of the proposed method with regard to its generalization capabilities across varying situations. For this purpose, the experimental setup of this work includes three urban study areas featuring different physical structures, four sets of HSR optical and LiDAR input data, as well as statistical measures to enable the assessment of classification accuracies and methodological transferability. The results of this study highlight the great potential of the developed approach for accurate, robust and large-area mapping of urban environments. User's and producer's accuracies observed for all maps are almost consistently above 80%, in many cases even above 90%. Only few larger class-specific errors occur mainly due to the simple assumptions on which the method is based. The presented feature extraction workflow can therefore be used as a template or starting point in the framework of future urban land cover mapping efforts.

[1]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  T. Oke City size and the urban heat island , 1973 .

[4]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[5]  R. Welch,et al.  Spatial resolution requirements for urban studies , 1982 .

[6]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[7]  Tong Lee,et al.  Probabilistic and Evidential Approaches for Multisource Data Analysis , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[8]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[9]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[10]  Douglas G. Altman,et al.  Practical statistics for medical research , 1990 .

[11]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[12]  Jon Atli Benediktsson,et al.  Consensus theoretic classification methods , 1992, IEEE Trans. Syst. Man Cybern..

[13]  B. Forster Coefficient of variation as a measure of urban spatial attributes, using SPOT HRV and Landsat TM data , 1993 .

[14]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  Robert A. Schowengerdt,et al.  A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[16]  Sebastiano B. Serpico,et al.  Classification of multisensor remote-sensing images by structured neural networks , 1995, IEEE Trans. Geosci. Remote. Sens..

[17]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[18]  Kun-Shan Chen,et al.  Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Barr,et al.  INFERRING URBAN LAND USE FROM SATELLITE SENSOR IMAGES USING KERNEL-BASED SPATIAL RECLASSIFICATION , 1996 .

[20]  C. Elvidge,et al.  A Technique for Using Composite DMSP/OLS "City Lights"Satellite Data to Map Urban Area , 1997 .

[21]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[22]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[23]  N. Bryant,et al.  Investigation of the integration of AVIRIS and IFSAR for urban analysis , 1998 .

[24]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[25]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[26]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[27]  J. Niemczynowicz Urban hydrology and water management – present and future challenges , 1999 .

[28]  J. Townshend,et al.  Beware of per-pixel characterization of land cover , 2000 .

[29]  Gagan Mirchandani,et al.  An integrated framework for image classification , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[30]  Stuart Barr,et al.  Monitoring Urban Land Use by Earth Observation , 2000 .

[31]  S. Pauleit,et al.  Assessing the environmental performance of land cover types for urban planning , 2000 .

[32]  Ing Jochen Schiewe,et al.  Potential and problems of multi-scale segmentation methods in remote sensing , 2001 .

[33]  Hermann Kaufmann,et al.  Automated differentiation of urban surfaces based on airborne hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  Josef Strobl,et al.  What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS , 2001 .

[35]  C. Elvidge,et al.  Night-time lights of the world: 1994–1995 , 2001 .

[36]  Gotthard Meinel,et al.  Pixelorientierte versus segmentorien- tierter Klassifikation von IKONOS- Satellitenbilddaten - ein Methodenver- gleich , 2001 .

[37]  Johannes R. Sveinsson,et al.  Multiple classifiers applied to multisource remote sensing data , 2002, IEEE Trans. Geosci. Remote. Sens..

[38]  C. Small High spatial resolution spectral mixture analysis of urban reflectance , 2003 .

[39]  Chad Hendrix,et al.  A Comparison of Urban Mapping Methods Using High-Resolution Digital Imagery , 2003 .

[40]  Martin Herold,et al.  Spectral resolution requirements for mapping urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  Limin Yang,et al.  An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery , 2003 .

[42]  C. Burnett,et al.  A multi-scale segmentation/object relationship modelling methodology for landscape analysis , 2003 .

[43]  C. Woodcock,et al.  Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[44]  Barbara Koch,et al.  Pixelbasierte Klassifizierung im Vergleich und zur Ergänzung zum objektbasierten Verfahren , 2003 .

[45]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[46]  D. Flanders,et al.  Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction , 2003 .

[47]  J. A. Voogta,et al.  Thermal remote sensing of urban climates , 2003 .

[48]  Curt H. Davis,et al.  A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[49]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[50]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[51]  P. Dare Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas , 2005 .

[52]  Belur V. Dasarathy,et al.  Urban remote sensing using multiple data sets: Past, present, and future , 2005, Inf. Fusion.

[53]  Guoliang Fan,et al.  Automatic CRP mapping using nonparametric machine learning approaches , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Jong-Sen Lee,et al.  Integration of optical and radar classifications for mapping pasture type in Western Australia , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[55]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[56]  Ruijin Ma DEM Generation and Building Detection from Lidar Data , 2005 .

[57]  B. Engel,et al.  MINIMIZING THE IMPACT OF URBANIZATION ON LONG TERM RUNOFF 1 , 2005 .

[58]  Manfred Ehlers,et al.  A novel method for generating 3D city models from high resolution and multi‐sensor remote sensing data , 2005 .

[59]  A. Tatem,et al.  Assessing the accuracy of satellite derived global and national urban maps in Kenya. , 2005, Remote sensing of environment.

[60]  Paolo Gamba,et al.  Semi-automatic choice of scale-dependent features for satellite SAR image classification , 2006, Pattern Recognit. Lett..

[61]  P. Gong,et al.  Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery , 2006 .

[62]  C. Georgi,et al.  JAS: The Next Generation Digital Aerial Scanner , 2006 .

[63]  Y. Ouma,et al.  On the optimization and selection of wavelet texture for feature extraction from high‐resolution satellite imagery with application towards urban‐tree delineation , 2006 .

[64]  Jon Atli Benediktsson,et al.  Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Chin-Chuan Han,et al.  Multisource Data Fusion for Landslide Classification Using Generalized Positive Boolean Functions , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[66]  D. Holcomb,et al.  Optimizing the High-Pass Filter Addition Technique for Image Fusion , 2007 .

[67]  A. Schneider,et al.  A critical look at representations of urban areas in global maps , 2007 .

[68]  R. Nemani,et al.  Global Distribution and Density of Constructed Impervious Surfaces , 2007, Sensors.

[69]  Uwe Stilla,et al.  Remote Sensing of Impervious Surfaces , 2007 .

[70]  S. Lange,et al.  [The kappa coefficient]. , 2007, Deutsche medizinische Wochenschrift.

[71]  Christelle Vancutsem,et al.  GlobCover: ESA service for global land cover from MERIS , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[72]  M. Bauer,et al.  Estimating and Mapping Impervious Surface Area by Regression Analysis of Landsat Imagery , 2007 .

[73]  U. Grouven,et al.  Der Kappa-Koeffizient , 2007 .

[74]  William J. Emery,et al.  Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest , 2008, IEEE Geoscience and Remote Sensing Letters.

[75]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[76]  T. Blaschke,et al.  Object‐based land‐cover classification for the Phoenix metropolitan area: optimization vs. transportability , 2008 .

[77]  Austin Troy,et al.  Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data , 2008, Sensors.

[78]  R. Platt,et al.  An Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification , 2008 .

[79]  Christiane Schmullius,et al.  Land-Cover Observations as Part of a Global Earth Observation System of Systems (GEOSS): Progress, Activities, and Prospects , 2008, IEEE Systems Journal.

[80]  G. Hay,et al.  Object-Based Image Analysis , 2008 .

[81]  Mohamed Ben Ahmed,et al.  Interpretation of Multisensor Remote Sensing Images: Multiapproach Fusion of Uncertain Information , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Geoffrey J. Hay,et al.  Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline , 2008 .

[83]  Stefan Lang,et al.  Object-based image analysis for remote sensing applications: modeling reality – dealing with complexity , 2008 .

[84]  M. Baatz,et al.  Progressing from object-based to object-oriented image analysis , 2008 .

[85]  John R. Jensen,et al.  Object‐based change detection using correlation image analysis and image segmentation , 2008 .

[86]  A. Troy,et al.  An object‐oriented approach for analysing and characterizing urban landscape at the parcel level , 2008 .

[87]  A. Tzotsos,et al.  A hybrid texture-based and region-based multi-scale image segmentation algorithm , 2008 .

[88]  Manfred Ehlers Future EO Sensors of Relevance ‚Äî Integrated Perspective for Global Urban Monitoring , 2009 .

[89]  M. Friedl,et al.  A new map of global urban extent from MODIS satellite data , 2009 .

[90]  T. Esch,et al.  Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data , 2009 .

[91]  D. Civco,et al.  Mapping urban areas on a global scale: which of the eight maps now available is more accurate? , 2009 .

[92]  Francisca López-Granados,et al.  Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery , 2009 .

[93]  Jianping Wu,et al.  Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston , 2009 .

[94]  R. Scalenghe,et al.  The anthropogenic sealing of soils in urban areas , 2009 .

[95]  Austin Troy,et al.  Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study , 2009 .

[96]  Gustavo Camps-Valls,et al.  Learning Relevant Image Features With Multiple-Kernel Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[97]  A. Elmore,et al.  Synergistic use of Landsat Multispectral Scanner with GIRAS land-cover data to retrieve impervious surface area for the Potomac River Basin in 1975 , 2010 .

[98]  T. Esch,et al.  Object-based feature extraction using high spatial resolution satellite data of urban areas , 2010 .

[99]  Giorgos Mountrakis,et al.  Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example , 2010 .

[100]  Dexter H. Locke,et al.  Prioritizing preferable locations for increasing urban tree canopy in New York City , 2010 .

[101]  Jianping Wu,et al.  Automated derivation of urban building density information using airborne LiDAR data and object-based method , 2010 .

[102]  Jixian Zhang Multi-source remote sensing data fusion: status and trends , 2010 .

[103]  E. Moran Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery. , 2010, Photogrammetric engineering and remote sensing.

[104]  Maycira Costa,et al.  Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[105]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[106]  Changshan Wu,et al.  High Resolution Impervious Surface Estimation , 2010 .

[107]  S. Bhaskaran,et al.  Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data , 2010 .

[108]  Bo Xu,et al.  GEOBIA vegetation mapping in Great Smoky Mountains National Park with spectral and non-spectral ancillary information. , 2010 .

[109]  Peng Gong,et al.  Removing shadows from Google Earth images , 2010 .

[110]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[111]  T. Esch,et al.  Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data , 2011 .

[112]  J. R. Jensen,et al.  Remote Sensing of Urban/Suburban Infrastructure and Socio‐Economic Attributes , 2011 .

[113]  Thomas Blaschke,et al.  Collective Sensing: Integrating Geospatial Technologies to Understand Urban Systems - An Overview , 2011, Remote. Sens..

[114]  Thomas Esch,et al.  Object-based image information fusion using multisensor earth observation data over urban areas , 2011 .

[115]  Andrea Baraldi,et al.  Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction , 2012, Remote. Sens..

[116]  Le Yu,et al.  Improving Landsat ETM+ Urban Area Mapping via Spatial and Angular Fusion With MISR Multi-Angle Observations , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[117]  Qian Du,et al.  Multi-Modal Change Detection, Application to the Detection of Flooded Areas: Outcome of the 2009–2010 Data Fusion Contest , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[118]  Y. S. Rao,et al.  Classification Accuracy of Multi-Frequency and Multi-Polarization SAR Images for Various Land Covers , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[119]  Benoît Stoll,et al.  SVM Selective Fusion (SELF) for Multi-Source Classification of Structurally Complex Tropical Rainforest , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[120]  John B. Vogler,et al.  LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy , 2012 .

[121]  Ming Zhong,et al.  Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data , 2012, Remote. Sens..

[122]  Keith C. Pelletier,et al.  An object-based system for LiDAR data fusion and feature extraction , 2013 .

[123]  Hwan-yeong Jeong Cities of the World: World Regional Urban Development , 2014 .

[124]  G. Priestnalla,et al.  Extracting urban features from LiDAR digital surface models , 2022 .