Optical-geometrical effects on the photoluminescence spectra of Si nanocrystals embedded in SiO2

We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si ex...

[1]  H. Atwater,et al.  Size-dependent electron-hole exchange interaction in Si nanocrystals , 2000 .

[2]  H. Hofmeister,et al.  Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films , 2002 .

[3]  Lorenzo Pavesi,et al.  Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition , 2002 .

[4]  S. Chaieb,et al.  Observation of laser oscillation in aggregates of ultrasmall silicon nanoparticles , 2002 .

[5]  S. Guha Characterization of Si+ ion-implanted SiO2 films and silica glasses , 1998 .

[6]  R. Elliman,et al.  Effect of material structure on photoluminescence spectra from silicon nanocrystals , 2004 .

[7]  Friedrich Huisken,et al.  Ellipsometric study of silicon nanocrystal optical constants , 2003 .

[8]  B. Luther-Davies,et al.  Optical absorption measurements of silica containing Si nanocrystals produced by ion implantation and thermal annealing , 2002 .

[9]  J. Samitier,et al.  Analysis of geometrical effects on the behavior of transverse and longitudinal modes of amorphous silicon compounds , 1997 .

[10]  Sabina Botti,et al.  Photoluminescence from silicon nano-particles synthesized by laser-induced decomposition of silane , 2000 .

[11]  S. Muramatsu,et al.  Logarithmic normal distribution of particle size from a luminescence line-shape analysis in porous silicon , 1997 .

[12]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[13]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[14]  P. D. Townsend,et al.  Optical properties of silicon nanoclusters fabricated by ion implantation , 1998 .

[15]  Tsutomu Shimizu-Iwayama,et al.  Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si , 2000 .

[16]  P. Pellegrino,et al.  Low-loss rib waveguides containing Si nanocrystals embedded in SiO2 , 2005 .

[17]  Kazuo Saitoh,et al.  Visible photoluminescence in Si+‐implanted silica glass , 1994 .

[18]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[19]  F. Priolo,et al.  Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films , 2004 .

[20]  Anthony J. Kenyon,et al.  The origin of photoluminescence from thin films of silicon-rich silica , 1996 .

[21]  J. Gittleman,et al.  Composite material films: optical properties and applications. , 1976, Applied optics.

[22]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[23]  Formation of luminescent Si nanocrystals by high-temperature rapid thermal chemical vapor deposition , 2003 .

[24]  P. Pellegrino,et al.  Size dependence of refractive index of Si nanoclusters embedded in SiO2 , 2005 .