A room temperature approach for the fabrication of aligned TiO₂ nanotube arrays on transparent conductive substrates.

A novel solution approach is reported for the fabrication of TiO₂ nanotube arrays on transparent conductive substrates via in situ conversion from nanowires. The as-prepared nanotube arrays not only demonstrate a larger surface area in comparison with the primary NWs, but also longer charge carrier lifetime than that of randomly packed nanoparticle films.

[1]  T. Mallouk,et al.  Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes , 2015 .

[2]  Liping Chen,et al.  [101̅0] oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance. , 2014, Journal of the American Chemical Society.

[3]  Xinjian Feng,et al.  Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. , 2014, Nano letters.

[4]  Yongcai Qiu,et al.  Mesoporous TiO2 single crystals: facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. , 2013, ACS applied materials & interfaces.

[5]  Jun Guo,et al.  Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. , 2013, Small.

[6]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[7]  Xiao-yan Wang,et al.  Oxidative Degradation of Amoxicillin in Aqueous Solution with Contact Glow Discharge Electrolysis , 2013 .

[8]  Yang-Fan Xu,et al.  Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells , 2013, Scientific Reports.

[9]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[10]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[11]  Yanhong Lin,et al.  Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity. , 2012, Nanoscale.

[12]  Yun Jeong Hwang,et al.  Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. , 2012, ACS nano.

[13]  A. J. Frank,et al.  Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires. , 2012, Angewandte Chemie.

[14]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[15]  D. J. Kim,et al.  Facile fabrication of vertically aligned TiO2 nanorods with high density and rutile/anatase phases on transparent conducting glasses: high efficiency dye-sensitized solar cells , 2012 .

[16]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[17]  Jiali Zhai,et al.  Investigation of photocatalytic activities over Bi₂WO₆/ZnWO₄ composite under UV light and its photoinduced charge transfer properties. , 2011, ACS applied materials & interfaces.

[18]  Jung‐Kun Lee,et al.  Carrier Transport in Dye-Sensitized Solar Cells Using Single Crystalline TiO2 Nanorods Grown by a Microwave-Assisted Hydrothermal Reaction , 2011 .

[19]  Di Gao,et al.  Multilayer assembly of nanowire arrays for dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[20]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[21]  Xuefeng Guo,et al.  Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. , 2010, Chemical communications.

[22]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[23]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[24]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[25]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[26]  Qiang Wang,et al.  The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods , 2007 .

[27]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[28]  T. Dittrich,et al.  Photovoltage in nanocrystalline porous TiO 2 , 2001 .

[29]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[30]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[31]  G. Eisenberg Colorimetric Determination of Hydrogen Peroxide , 1943 .

[32]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[33]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .