senSCOPE: Modeling mixed canopies combining green and brown senesced leaves. Evaluation in a Mediterranean Grassland

[1]  D. Riaño,et al.  Estimación de variables esenciales de la vegetación en un ecosistema de dehesa utilizando factores de reflectividad simulados estacionalmente , 2020 .

[2]  R. Relyea,et al.  Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature , 2020 .

[3]  Reisha D. Peters,et al.  Sensitivity and Correlation Analysis of PROSPECT-D and ABM-B Leaf Models , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Javier Pacheco-Labrador,et al.  Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits , 2019 .

[5]  Javier Pacheco-Labrador,et al.  Nitrogen and Phosphorus effect on Sun-Induced Fluorescence and Gross Primary Productivity in Mediterranean Grassland , 2019, Remote. Sens..

[6]  D. Schimel,et al.  Flux towers in the sky: global ecology from space. , 2019, The New phytologist.

[7]  P. Zarco-Tejada,et al.  Radiative transfer Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials , 2019, Remote Sensing of Environment.

[8]  K. Soudani,et al.  Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning , 2019, Remote Sensing of Environment.

[9]  J. Belnap,et al.  Connectivity Dynamics in Dryland Litter Cycles: Moving Decomposition beyond Spatial Stasis , 2019, BioScience.

[10]  H. D. De Boeck,et al.  End-of-season senescence in grassland species can be traced to leaf temperature during preceding summer drought , 2019, Perspectives in Plant Ecology, Evolution and Systematics.

[11]  Jun Liu,et al.  Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem , 2019, Forest Ecology and Management.

[12]  Jörg Bendix,et al.  Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data , 2019, Remote Sensing of Environment.

[13]  W. Verhoef,et al.  Extending the SCOPE model to combine optical reflectance and soil moisture observations for remote sensing of ecosystem functioning under water stress conditions , 2019, Remote Sensing of Environment.

[14]  C. Frankenberg,et al.  Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes , 2019, Biogeosciences.

[15]  Javier Pacheco-Labrador,et al.  Improving the Performance of 3-D Radiative Transfer Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem , 2018, Remote. Sens..

[16]  Javier Pacheco-Labrador,et al.  Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem , 2018, Agricultural and Forest Meteorology.

[17]  Javier Pacheco-Labrador,et al.  Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree-Grass Ecosystems , 2018, Remote. Sens..

[18]  W. Verhoef,et al.  Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics , 2018, Remote Sensing of Environment.

[19]  L. Guanter,et al.  Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data , 2018, Remote Sensing of Environment.

[20]  E. Tyystjärvi,et al.  Degradation of chlorophyll and synthesis of flavonols during autumn senescence—the story told by individual leaves , 2018, AoB PLANTS.

[21]  H. Hasenauer,et al.  Quantifying Carbon and Nutrient Input From Litterfall in European Forests Using Field Observations and Modeling , 2018 .

[22]  Christiaan van der Tol,et al.  Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode. , 2018 .

[23]  Shawn P Serbin,et al.  Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat , 2017, Journal of experimental botany.

[24]  H. Ren,et al.  Spatiotemporal variations in litter mass and their relationships with climate in temperate grassland: A case study from Xilingol grassland, Inner Mongolia (China) , 2017 .

[25]  Wouter Verhoef,et al.  The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies , 2017 .

[26]  Yuhong He,et al.  Determining the absorption coefficients of decay pigments in decomposing monocots , 2017 .

[27]  Tiana W. Hammer,et al.  Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. , 2017, The New phytologist.

[28]  Stéphane Jacquemoud,et al.  PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle , 2017 .

[29]  Javier Pacheco-Labrador,et al.  Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. , 2017 .

[30]  C. Field,et al.  Canopy near-infrared reflectance and terrestrial photosynthesis , 2017, Science Advances.

[31]  Wout Verhoef,et al.  The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8 , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[32]  P. Tripodi,et al.  Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects , 2017, International journal of molecular sciences.

[33]  Bin Chen,et al.  Leaf chlorophyll content as a proxy for leaf photosynthetic capacity , 2017, Global change biology.

[34]  W. Verhoef,et al.  A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops , 2016 .

[35]  Matthew F. McCabe,et al.  Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval challenges of dryland agricultural systems , 2016 .

[36]  W. Verhoef,et al.  Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. , 2016 .

[37]  W. Kustas,et al.  Integrating Chlorophyll fapar and Nadir Photochemical Reflectance Index from EO-1/Hyperion to Predict Cornfield Daily Gross Primary Production , 2016 .

[38]  L. Junker,et al.  Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. , 2016, Tree physiology.

[39]  Bofu Yu,et al.  Partitioning evapotranspiration based on the concept of underlying water use efficiency , 2016 .

[40]  Raul Zurita-Milla,et al.  Visualizing the ill-posedness of the inversion of a canopy radiative transfer model: A case study for Sentinel-2 , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[41]  M. Rossini,et al.  Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem , 2015 .

[42]  M. Cruz,et al.  Effects of curing on grassfires: I. Fuel dynamics in a senescing grassland , 2015 .

[43]  Clayton C. Kingdon,et al.  Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy , 2015 .

[44]  A. Gitelson,et al.  Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC) , 2015 .

[45]  Eric G. Lamb,et al.  Litter accumulation drives grassland plant community composition and functional diversity via leaf traits , 2015, Plant Ecology.

[46]  J. Berry,et al.  Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence , 2014, Journal of geophysical research. Biogeosciences.

[47]  A. Huete,et al.  Estimation of vegetation photosynthetic capacity from space‐based measurements of chlorophyll fluorescence for terrestrial biosphere models , 2014, Global change biology.

[48]  Wilfried Thuiller,et al.  Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands , 2014 .

[49]  Xiaohui Yang,et al.  Quantifying Responses of Spectral Vegetation Indices to Dead Materials in Mixed Grasslands , 2014, Remote. Sens..

[50]  M. Pärtel,et al.  The functional assembly of experimental grasslands in relation to fertility and resource heterogeneity , 2014 .

[51]  Xiaohui Feng,et al.  Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models. , 2013, The New phytologist.

[52]  K. Krupinska,et al.  Plant senescence and crop productivity , 2013, Plant Molecular Biology.

[53]  Philippe Ciais,et al.  A framework for benchmarking land models , 2012 .

[54]  A. Catorci,et al.  Flowering patterns in sub-Mediterranean grasslands: a functional approach , 2012 .

[55]  Steven F Railsback,et al.  Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  Gaëtan Louarn,et al.  How good is the turbid medium-based approach for accounting for light partitioning in contrasted grass--legume intercropping systems? , 2011, Annals of botany.

[57]  Stephen Porder,et al.  Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. , 2011, Ecology letters.

[58]  D. Metcalfe,et al.  Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change , 2011 .

[59]  Yuhong He,et al.  Scaling up Semi-Arid Grassland Biochemical Content from the Leaf to the Canopy Level: Challenges and Opportunities , 2010, Sensors.

[60]  Craig S. T. Daughtry,et al.  Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover , 2010, Remote. Sens..

[61]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[62]  Pol Coppin,et al.  A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques , 2009 .

[63]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[64]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[65]  J. Féret Apport de la modélisation pour l'estimation de la teneur en pigments foliaires par télédétection , 2009 .

[66]  Rasmus Houborg,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at regional scales , 2009 .

[67]  A. Gitelson,et al.  Vertical profile and temporal variation of chlorophyll in maize canopy: Quantitative "crop vigor" indicator by means of reflectance-based techniques , 2008 .

[68]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[69]  Yiqi Luo,et al.  Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors , 2008 .

[70]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[71]  R. Houborg,et al.  Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data , 2008 .

[72]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[73]  H. Nam,et al.  Leaf senescence. , 2007, Annual review of plant biology.

[74]  L. Lepiniec,et al.  Flavonoid oxidation in plants: from biochemical properties to physiological functions. , 2007, Trends in plant science.

[75]  G. Zurlini,et al.  Mapping litter decomposition by remote-detected indicators , 2006 .

[76]  Christopher B. Field,et al.  Diverse responses of phenology to global changes in a grassland ecosystem , 2006, Proceedings of the National Academy of Sciences.

[77]  S. Hörtensteiner Chlorophyll degradation during senescence. , 2006, Annual review of plant biology.

[78]  S. Jacquemoud,et al.  Leaf BRDF measurements and model for specular and diffuse components differentiation , 2005 .

[79]  N. Q. Dinh,et al.  Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites , 2005 .

[80]  J. Keeley,et al.  Plot shape effects on plant species diversity measurements , 2005 .

[81]  Matthijs Tollenaar,et al.  Vertical Profile of Leaf Senescence during the Grain‐Filling Period in Older and Newer Maize Hybrids , 2004 .

[82]  Z. Cardon,et al.  Decomposition dynamics in mixed‐species leaf litter , 2004 .

[83]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[84]  Heike Bach,et al.  Sensitivity studies on the effect of surface soil moisture on canopy reflectance using the radiative transfer model GeoSAIL , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[85]  A. Mamolos,et al.  Decomposition of dominant plant species litter in a semi-arid grassland , 2003 .

[86]  W. Verhoef,et al.  Remote sensing data assimilation using coupled radiative transfer models , 2003 .

[87]  M. Weiss,et al.  Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data , 2002 .

[88]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[89]  Andreas P. Mamolos,et al.  Differential drought tolerance of five coexisting plant species in Mediterranean lowland grasslands , 2001 .

[90]  Michael Bahn,et al.  A multi-component, multi-species model of vegetation–atmosphere CO2 and energy exchange for mountain grasslands , 2001 .

[91]  Heike Bach,et al.  Coupling remote sensing observation models and a growth model for improved retrieval of (geo)biophysical information from optical remote sensing data , 2001, SPIE Remote Sensing.

[92]  Wout Verhoef,et al.  Retrieval of geo- and biophysical information from remote sensing through advanced combination of a land surface process model with inversion techniques in the optical and microwave spectral range , 2001 .

[93]  P. Matile,et al.  Biochemistry of Indian summer: physiology of autumnal leaf coloration , 2000, Experimental Gerontology.

[94]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[95]  C. Daughtry,et al.  Plant Litter and Soil Reflectance , 2000 .

[96]  A. Gitelson,et al.  Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening , 1999 .

[97]  P. Reichert,et al.  A comparison of techniques for the estimation of model prediction uncertainty , 1999 .

[98]  Gregory P. Asner,et al.  SCALE DEPENDENCE OF ABSORPTION OF PHOTOSYNTHETICALLY ACTIVE RADIATION IN TERRESTRIAL ECOSYSTEMS , 1998 .

[99]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[100]  Gregory P. Asner,et al.  Variability in Leaf and Litter Optical Properties: Implications for BRDF Model Inversions Using AVHRR, MODIS, and MISR , 1998 .

[101]  J. Privette,et al.  Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling , 1996 .

[102]  S. Guyot,et al.  STRUCTURAL DETERMINATION OF COLOURLESS AND YELLOW DIMERS RESULTING FROM (+)-CATECHIN COUPLING CATALYSED BY GRAPE POLYPHENOLOXIDASE , 1996 .

[103]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[104]  Alfredo Huete,et al.  Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices , 1996 .

[105]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[106]  B. Biswal,et al.  Carotenoid catabolism during leaf senescence and its control by light , 1995 .

[107]  Anatoly A. Gitelson,et al.  Why and What for the Leaves Are Yellow in Autumn? On the Interpretation of Optical Spectra of Senescing Leaves (Acerplatanoides L.)* , 1995 .

[108]  P. Bottner,et al.  Litter decomposition, climate and liter quality. , 1995, Trends in ecology & evolution.

[109]  Qin Wenhan,et al.  Modeling bidirectional reflectance of multicomponent vegetation canopies , 1993 .

[110]  J. Laffarga,et al.  Strategies in Mediterranean grassland annuals in relation to stress and disturbance , 1993 .

[111]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[112]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[113]  David L. Peterson,et al.  Remote Sensing of Litter and Soil Organic Matter Decomposition in Forest Ecosystems , 1990 .

[114]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[115]  D. Whitfield,et al.  Changes in the chlorophylls and carotenoids of leaves of Nicotiana tabacum during senescence , 1974 .

[116]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .