Relational Models

We provide a survey on relational models. Relational models describe complete networked domains by taking into account global dependencies in the data. Relational models can lead to more accurate predictions if compared to non-relational machine learning approaches. Relational models typically are based on probabilistic graphical models, e.g., Bayesian networks, Markov networks, or latent variable models. Relational models have applications in social networks analysis, the modeling of knowledge graphs, bioinformatics, recommendation systems, natural language processing, medical decision support, and linked data.

[1]  Thomas Hofmann,et al.  Stochastic Relational Models for Discriminative Link Prediction , 2007 .

[2]  Stephen Muggleton,et al.  Inductive Logic Programming , 2011, Lecture Notes in Computer Science.

[3]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[4]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[5]  Avi Pfeffer,et al.  Probabilistic Frame-Based Systems , 1998, AAAI/IAAI.

[6]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[7]  Stephan Bloehdorn,et al.  Graph Kernels for RDF Data , 2012, ESWC.

[8]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[9]  Volker Tresp,et al.  Nonlinear Markov Networks for Continuous Variables , 1997, NIPS.

[10]  Xueyan Jiang,et al.  Reducing the Rank in Relational Factorization Models by Including Observable Patterns , 2014, NIPS.

[11]  Volker Tresp,et al.  Predicting Sequences of Clinical Events by Using a Personalized Temporal Latent Embedding Model , 2015, 2015 International Conference on Healthcare Informatics.

[12]  Volker Tresp,et al.  Type-Constrained Representation Learning in Knowledge Graphs , 2015, SEMWEB.

[13]  Ben Taskar,et al.  Inductive Logic Programming in a Nutshell , 2007 .

[14]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[15]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[16]  Volker Tresp,et al.  Learning with Memory Embeddings , 2015, ArXiv.

[17]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[18]  Ben Taskar,et al.  Probabilistic Entity-Relationship Models, PRMs, and Plate Models , 2007 .

[19]  Achim Rettinger,et al.  Materializing and Querying Learned Knowledge , 2009 .

[20]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[21]  Jennifer Neville,et al.  Dependency networks for relational data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[22]  Xueyan Jiang,et al.  Probabilistic Latent-Factor Database Models , 2014, LD4KD.

[23]  Lorenzo Rosasco,et al.  Holographic Embeddings of Knowledge Graphs , 2015, AAAI.

[24]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[25]  Hans-Peter Kriegel,et al.  Factorizing YAGO: scalable machine learning for linked data , 2012, WWW.

[26]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[27]  Luc De Raedt,et al.  Bayesian Logic Programs , 2001, ILP Work-in-progress reports.

[28]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[29]  Ben Taskar,et al.  Markov Logic: A Unifying Framework for Statistical Relational Learning , 2007 .

[30]  Christopher Ré,et al.  Probabilistic databases , 2011, SIGA.

[31]  Daphne Koller,et al.  Probabilistic Relational Models , 1999, ILP.

[32]  J. R. Quinlan Learning Logical Definitions from Relations , 1990 .

[33]  Kristian Kersting,et al.  Multi-Relational Learning with Gaussian Processes , 2009, IJCAI.

[34]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[35]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[36]  Achim Rettinger,et al.  A statistical relational model for trust learning , 2008, AAMAS.

[37]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[38]  Volker Tresp,et al.  Predicting the co-evolution of event and Knowledge Graphs , 2015, 2016 19th International Conference on Information Fusion (FUSION).

[39]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .