DisQ: A Novel Quantum Output State Classification Method on IBM Quantum Computers using OpenPulse

Superconducting quantum computing technology has ushered in a new era of computational possibilities. While a considerable research effort has been geared toward improving the quantum technology and building the software stack to efficiently execute quantum algorithms with reduced error rate, effort toward optimizing how quantum output states are defined and classified for the purpose of reducing the error rate is still limited. To this end, this paper proposes DisQ, a quantum output state classification approach which reduces error rates of quantum programs on NISQ devices.

[1]  Scott Pakin,et al.  A Survey of Programming Tools for D-Wave Quantum-Annealing Processors , 2018, ISC.

[2]  Michael J. Biercuk,et al.  Prediction and real-time compensation of qubit decoherence via machine learning , 2016, Nature Communications.

[3]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[4]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[5]  Swaroop Ghosh,et al.  MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ Computers: Invited Paper , 2019, 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[6]  Paola Cappellaro,et al.  Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.

[7]  Moinuddin K. Qureshi,et al.  Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes , 2019, MICRO.

[8]  Tirthak Patel,et al.  UREQA: Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping on NISQ-Era Quantum Computers , 2020, USENIX Annual Technical Conference.

[9]  Henry Hoffmann,et al.  Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers , 2019, ASPLOS.

[10]  John Shalf,et al.  Understanding Quantum Control Processor Capabilities and Limitations through Circuit Characterization , 2019, 2020 International Conference on Rebooting Computing (ICRC).

[11]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[12]  Yang Wang,et al.  Scalable quantum error correction with the bosonic GKP code , 2019 .

[13]  J. Smolin,et al.  Trading Classical and Quantum Computational Resources , 2015, 1506.01396.

[14]  Moinuddin K. Qureshi,et al.  Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias , 2019, MICRO.

[15]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[16]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[17]  Moinuddin K. Qureshi,et al.  A Case for Multi-Programming Quantum Computers , 2019, MICRO.

[18]  Scott Pakin,et al.  C to D-Wave: A High-level C Compilation Framework for Quantum Annealers , 2019, 2019 IEEE High Performance Extreme Computing Conference (HPEC).

[19]  J. W. O. Garmon,et al.  Benchmarking Noise Extrapolation with OpenPulse , 2019 .

[20]  Frederic T. Chong,et al.  Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse , 2020, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[21]  Robert Wille,et al.  Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[22]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[23]  Kaitlin N. Smith,et al.  A Quantum Computational Compiler and Design Tool for Technology-Specific Targets , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[24]  Huiyang Zhou,et al.  Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation , 2019, IEEE Computer Architecture Letters.

[25]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[26]  Margaret Martonosi,et al.  Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[27]  S. Girvin,et al.  Experimental quantum error correction with binomial bosonic codes , 2019 .

[28]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[29]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[30]  M. Berta Q # : A Quantum Programming Language by Microsoft , 2018 .

[31]  Henry Hoffmann,et al.  Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale Quantum Machines , 2019, MICRO.

[32]  Abdullah Ash-Saki,et al.  QURE: Qubit Re-allocation in Noisy Intermediate-Scale Quantum Computers , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[33]  Yuan Xie,et al.  Towards Efficient Superconducting Quantum Processor Architecture Design , 2019, ASPLOS.

[34]  Margaret Martonosi,et al.  Next Steps in Quantum Computing: Computer Science's Role , 2019, ArXiv.

[35]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[36]  K. Brown,et al.  Controlling error orientation to improve quantum algorithm success rates , 2018, Physical Review A.

[37]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[38]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[39]  Scott Pakin,et al.  A quantum macro assembler , 2016, 2016 IEEE High Performance Extreme Computing Conference (HPEC).