Stabilisation of a highly reactive bis(mu-oxo)dicopper(III) species at room temperature by electronic and steric constraint of an unconventional nitrogen donor ligand.
暂无分享,去创建一个
Sonja Herres-Pawlis | Gerald Henkel | Gerd Wellenreuther | Benjamin Schulz | Stephan Binder | Roxana Haase | G. Wellenreuther | S. Herres‐Pawlis | M. Rübhausen | S. Binder | Michael Rübhausen | Wolfram Meyer-Klaucke | G. Henkel | Andreas Eich | Roxana Haase | A. Eich | W. Meyer‐Klaucke | B. Schulz | W. Meyer-klaucke
[1] T. Ressler. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.
[2] William B Tolman,et al. Reactivity of dioxygen-copper systems. , 2004, Chemical reviews.
[3] R. Strange,et al. Constrained and restrained refinement in EXAFS data analysis with curved wave theory. , 1992, Biochemistry.
[4] I. Ascone,et al. Experimental aspects of biological X-ray absorption spectroscopy. , 2003, Journal of synchrotron radiation.
[5] Jason A. Halfen,et al. Reversible Cleavage and Formation of the Dioxygen O-O Bond Within a Dicopper Complex , 1996, Science.
[6] Edward I. Solomon,et al. Spectroscopic and Electronic Structural Studies of the Cu(III)2 Bis-μ-oxo Core and Its Relation to the Side-On Peroxo-Bridged Dimer , 1999 .
[7] W. Woodruff,et al. Detailed aspects of Raman scattering. Overtone and combination intensities and prescriptions for determining excited-state structure , 1985 .
[8] M. Korbas,et al. KEMP: A program script for automated biological x-ray absorption spectroscopy data reduction , 2006 .
[9] Miles V. Klein,et al. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy , 2005 .
[10] U. Flörke,et al. Hydroxylation of a methyl group : synthesis of [Cu2(btmmo)2I]+ and of [Cu2(btmmO)2]2+ containing the novel ligand {bis(trimethylmethoxy)guanidino} propane (btmmO) by copper-assisted oxygen activation , 2005 .
[11] P. Holland,et al. Dioxygen activation by copper sites: relative stability and reactivity of (μ-η2:η2-peroxo)- and bis(μ-oxo)dicopper cores , 1999 .
[12] J. J. Schneider,et al. 1,3-Bis(N,N,N′,N′-tetramethylguanidino)propane: synthesis, characterization and bonding properties of the first bidentate, peralkylated guanidine ligand , 2000 .
[13] Christian Würtele,et al. Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. , 2008, Angewandte Chemie.
[14] Edward I. Solomon,et al. Kupferproteine: Koordination und Aktivierung von Sauerstoff und seine Reduktion zu Wasser , 2001 .
[15] Bart Hazes,et al. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences , 1994, Proteins.
[16] T. D. Stack,et al. Complexity with simplicity: a steric continuum of chelating diamines with copper(I) and dioxygen , 2003 .
[17] Jan Reedijk,et al. Homogeneous biomimetic oxidation catalysis , 2006 .
[18] Y. Matoba,et al. Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis* , 2006, Journal of Biological Chemistry.
[19] U. Fittschen,et al. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type☆ , 2008 .
[20] E. Heller,et al. Polyatomic Raman scattering for general harmonic potentials , 1982 .
[21] Sonja Herres-Pawlis,et al. A Library of Peralkylated Bis‐guanidine Ligands for Use in Biomimetic Coordination Chemistry , 2005 .
[22] Michael Vance,et al. Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism , 2005, Science.
[23] K. V. van Holde,et al. Crystal structure of a functional unit from Octopus hemocyanin. , 1998, Journal of molecular biology.
[24] T. Keil. Shapes of Impurity Absorption Bands in Solids , 1965 .
[25] K. Hodgson,et al. A Systematic K-edge X-ray Absorption Spectroscopic Study of Cu(III) Sites , 2000 .
[26] Adam P. Cole,et al. Bis(mu-oxo)dicopper(III) complexes of a homologous series of simple peralkylated 1,2-diamines: steric modulation of structure, stability, and reactivity. , 2005, Inorganic chemistry.
[27] K. Karlin,et al. Copper-dioxygen complexes and their roles in biomimetic oxidation reactions , 2003 .
[28] E. Heller,et al. Time‐dependent theory of Raman scattering , 1979 .
[29] W. Tolman,et al. Bis(μ‐oxo)dimetal “Diamond” Cores in Copper and Iron Complexes Relevant to Biocatalysis , 2002 .
[30] J. Carpenter,et al. Recent Structural Work on the Oxygen Transport Protein Hemocyanin , 1994 .
[31] Sonja Herres-Pawlis,et al. Tuning of Copper(I)–Dioxygen Reactivity by Bis(guanidine) Ligands , 2005 .
[32] T. D. Stack,et al. Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.
[33] Siegfried Schneider,et al. Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. , 2004, Angewandte Chemie.
[34] A. Palmer,et al. Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. , 2001, Angewandte Chemie.
[35] William B. Tolman,et al. Biokatalytisch relevante rautenförmige Bis(μ‐oxo)dimetall‐Kerne in Kupfer‐ und Eisenkomplexen , 2002 .
[36] Siegfried Schneider,et al. Spektroskopischer und theoretischer Nachweis eines beständigen End‐on‐Kupfersuperoxokomplexes , 2004 .
[37] Patrick L. Holland,et al. Resonance Raman spectroscopy as a probe of the bis(μ-oxo)dicopper core , 2000 .
[38] Sonja Herres-Pawlis,et al. Phenolate hydroxylation in a bis(mu-oxo)dicopper(III) complex: lessons from the guanidine/amine series. , 2009, Journal of the American Chemical Society.
[39] Klaus Harms,et al. Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. , 2006, Angewandte Chemie.
[40] K. Harms,et al. Kristallographische Charakterisierung eines synthetischen 1:1-End-on-Kupferdisauerstoff- Adduktkomplexes† , 2006 .
[41] William B. Tolman,et al. Copper-Dioxygen and Copper-Oxo Species Relevant to Copper Oxygenases and Oxidases , 2000 .