Direct fabrication of integrated 3D epitaxial functional transition metal oxide nanostructures using extremely small hollow nanopillar nano-imprint metal masks

A novel nanofabrication technique is developed for functional oxides. Combining nano-imprint lithography, sidewall-etching and sidewall-deposition processes enables us to prepare Mo hollow nanopillar masks with 100 and 60 nm window sizes, which is smaller than the original nano-imprint mold size of 250 nm. Using this Mo nanomask, extremely small epitaxial ferromagnetic oxide (Fe(2.5)Mn(0.5)O(4)) nanostructures can be directly grown on sapphire substrates at the deposition temperature of 350 °C in a pulsed laser deposition (PLD) process.

[1]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[2]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[3]  J. Katine,et al.  Device implications of spin-transfer torques , 2008 .

[4]  N. Wu,et al.  Directed fabrication of radially stacked multifunctional oxide heterostructures using soft electron-beam lithography. , 2006, Small.

[5]  Hea-Yeon Lee,et al.  Epitaxial nanodot arrays of transition-metal oxides fabricated by dry deposition combined with a nanoimprint-lithography-based molybdenum lift-off technique. , 2008, Small.

[6]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[7]  T. Ishikawa,et al.  Electronic structures of Fe 3 − x M x O 4 ( M = Mn , Zn ) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism , 2007 .

[8]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[9]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[10]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[11]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[12]  Tomoji Kawai,et al.  Direct fabrication of integrated 3D Au nanobox arrays by sidewall deposition with controllable heights and thicknesses , 2009, Nanotechnology.

[13]  Tomoji Kawai,et al.  Electrical-field control of metal–insulator transition at room temperature in Pb(Zr0.2Ti0.8)O3/La1−xBaxMnO3 field-effect transistor , 2003 .

[14]  Kazuya Goto,et al.  Controlled fabrication of epitaxial (Fe,Mn)3O4 artificial nanowire structures and their electric and magnetic properties. , 2009, Nano letters.

[15]  H. Zeng CHEMICAL ETCHING OF MOLYBDENUM TRIOXIDE : A NEW TAILOR-MADE SYNTHESIS OF MOO3 CATALYSTS , 1998 .

[16]  Hidekazu Tanaka,et al.  Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique , 2005 .

[17]  Shoso Shingubara,et al.  Fabrication of Nanomaterials Using Porous Alumina Templates , 2003 .

[18]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[19]  Marin Alexe,et al.  Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. , 2008, Nature nanotechnology.

[20]  N. Suzuki,et al.  Epitaxial Transition Metal Oxide Nanostructures Fabricated by a Combination of AFM Lithography and Molybdenum Lift‐Off , 2008 .

[21]  Q. Song,et al.  Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. , 2004, Journal of the American Chemical Society.