Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements

We consider the problem of recovering a signal <inline-formula> <tex-math notation="LaTeX">$ \mathbf {x^{*}}\in \mathbb {R}^{n}$ </tex-math></inline-formula>, from magnitude-only measurements, <inline-formula> <tex-math notation="LaTeX">$y_{i} = \left |{ \left \langle{ { \mathbf {a}_{i}}, \mathbf {x^{*}} }\right \rangle }\right | $ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$i=\{1,2,\ldots ,m\}$ </tex-math></inline-formula>. This is a stylized version of the classical <italic>phase retrieval problem</italic>, and is a fundamental challenge in nano- and bio-imaging systems, astronomical imaging, and speech processing. It is well-known that the above problem is ill-posed, and therefore some additional assumptions on the signal and/or the measurements are necessary. In this paper, we consider the case where the underlying signal <inline-formula> <tex-math notation="LaTeX">$ \mathbf {x^{*}}$ </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>-sparse. For this case, we develop a novel recovery algorithm that we call <italic>Compressive Phase Retrieval with Alternating Minimization</italic>, or <italic>CoPRAM</italic>. Our algorithm is simple and is obtained via a natural combination of the classical alternating minimization approach for phase retrieval with the CoSaMP algorithm for sparse recovery. Despite its simplicity, we prove that our algorithm achieves a sample complexity of <inline-formula> <tex-math notation="LaTeX">$ \mathcal {O}\left ({{s^{2} \log n}}\right )$ </tex-math></inline-formula> with Gaussian measurements <inline-formula> <tex-math notation="LaTeX">$ { \mathbf {a}_{i}}$ </tex-math></inline-formula>, which matches the best known existing results; moreover, it also demonstrates linear convergence in theory and practice. An appealing feature of our algorithm is that it requires no extra tuning parameters other than the signal sparsity level <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>. Moreover, we show that our algorithm is robust to noise. The quadratic dependence of sample complexity on the sparsity level is sub-optimal, and we demonstrate how to alleviate this via <italic>additional</italic> assumptions beyond sparsity. First, we study the (practically) relevant case where the sorted coefficients of the underlying sparse signal exhibit a power law decay. In this scenario, we show that the CoPRAM algorithm achieves a sample complexity of <inline-formula> <tex-math notation="LaTeX">$ \mathcal {O}\left ({{s \log n}}\right )$ </tex-math></inline-formula>, which is close to the information-theoretic limit. We then consider the case where the underlying signal <inline-formula> <tex-math notation="LaTeX">$ \mathbf {x^{*}}$ </tex-math></inline-formula> arises from <italic>structured</italic> sparsity models. We specifically examine the case of <italic>block-sparse</italic> signals with uniform block size of <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula> and block sparsity <inline-formula> <tex-math notation="LaTeX">$k=s/b$ </tex-math></inline-formula>. For this problem, we design a recovery algorithm that we call <italic>Block CoPRAM</italic> that further reduces the sample complexity to <inline-formula> <tex-math notation="LaTeX">$ \mathcal {O}\left ({{ks \log n}}\right )$ </tex-math></inline-formula>. For sufficiently large block lengths of <inline-formula> <tex-math notation="LaTeX">$b=\Theta (s)$ </tex-math></inline-formula>, this bound equates to <inline-formula> <tex-math notation="LaTeX">$ \mathcal {O}\left ({{s \log n}}\right )$ </tex-math></inline-formula>. To our knowledge, our approach constitutes the first family of <italic>linearly convergent</italic> algorithms for signal recovery from magnitude-only Gaussian measurements that exhibit a sub-quadratic dependence on the signal sparsity level.

[1]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[2]  Sundeep Rangan,et al.  Compressive phase retrieval via generalized approximate message passing , 2012, Allerton Conference.

[3]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[4]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[5]  Piotr Indyk,et al.  Nearly Linear-Time Model-Based Compressive Sensing , 2014, ICALP.

[6]  Chinmay Hegde,et al.  Low Rank Fourier Ptychography , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[7]  Kannan Ramchandran,et al.  PhaseCode: Fast and Efficient Compressive Phase Retrieval Based on Sparse-Graph Codes , 2017, IEEE Transactions on Information Theory.

[8]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[9]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[10]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[11]  Yang Wang,et al.  Phase retrieval from very few measurements , 2013, ArXiv.

[12]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[13]  V. Bentkus An Inequality for Tail Probabilities of Martingales with Differences Bounded from One Side , 2003 .

[14]  Chinmay Hegde,et al.  Sub-Diffraction Imaging Using Fourier Ptychography and Structured Sparsity , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, International Symposium on Information Theory.

[16]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[17]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[18]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[19]  Chinmay Hegde,et al.  Fast, Sample-Efficient Algorithms for Structured Phase Retrieval , 2017, NIPS.

[20]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[21]  Yonina C. Eldar,et al.  Convolutional Phase Retrieval , 2017, NIPS.

[22]  Volkan Cevher,et al.  Recovery of compressible signals in unions of subspaces , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[23]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[24]  Chinmay Hegde,et al.  Towards Sample-Optimal Methods for Solving Random Quadratic Equations with Structure , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[25]  Kannan Ramchandran,et al.  Compressed sensing using sparse-graph codes for the continuous-alphabet setting , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[26]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[27]  M. Talagrand The Generic Chaining , 2005 .

[28]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[29]  Piya Pal,et al.  Sparse phase retrieval using partial nested fourier samplers , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[30]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[31]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[32]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[33]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[34]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[35]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[36]  Sjoerd Dirksen,et al.  Tail bounds via generic chaining , 2013, ArXiv.

[37]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[38]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[39]  Richard Baraniuk,et al.  Recovery of Clustered Sparse Signals from Compressive Measurements , 2009 .

[40]  Piotr Indyk,et al.  A Nearly-Linear Time Framework for Graph-Structured Sparsity , 2015, ICML.

[41]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[42]  Piotr Indyk,et al.  A fast approximation algorithm for tree-sparse recovery , 2014, 2014 IEEE International Symposium on Information Theory.

[43]  Justin K. Romberg,et al.  Efficient Compressive Phase Retrieval with Constrained Sensing Vectors , 2015, NIPS.

[44]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[45]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[46]  Gang Wang,et al.  Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow , 2016, NIPS.

[47]  Mahdi Soltanolkotabi,et al.  Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization , 2017, IEEE Transactions on Information Theory.

[48]  Gang Wang,et al.  Solving Almost all Systems of Random Quadratic Equations , 2017, NIPS 2017.

[49]  Deanna Needell,et al.  Greedy signal recovery review , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[50]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[51]  Ke Wei Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study , 2015 .

[52]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[53]  Mayank Bakshi,et al.  SUPER: Sparse signals with unknown phases efficiently recovered , 2014, 2014 IEEE International Symposium on Information Theory.

[54]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[55]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[56]  Stefano Marchesini,et al.  Phase retrieval and saddle-point optimization. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[58]  Yingbin Liang,et al.  Reshaped Wirtinger Flow for Solving Quadratic System of Equations , 2016, NIPS.

[59]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[60]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[61]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, ISIT.

[62]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[63]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[64]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[65]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[66]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[67]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[68]  Piotr Indyk,et al.  Fast Algorithms for Structured Sparsity , 2015, Bull. EATCS.

[69]  Piotr Indyk,et al.  Approximation-Tolerant Model-Based Compressive Sensing , 2014, SODA.

[70]  K. Nugent,et al.  Unique phase recovery for nonperiodic objects. , 2003, Physical review letters.

[71]  Allen Y. Yang,et al.  CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem , 2012, NIPS.