Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set

We present a unified approach to a class of nonconvex global optimization problems with composite monotonic constraints. (By composite monotonic function is meant a function which is the composition of a monotonic function on ℝn with a mapping from ℝn → ℝm with m ≤ n.) This class includes problems with constraints involving products of linear functions, sums of ratio functions, etc., and also problems of constrained optimization over efficient/weakly efficient points. The approach is based on transforming the problem into a monotonic optimization problem in the space ℝp, which can then be efficiently solved by recently developed techniques. Nontrivial numerical examples are presented to illustrate the practicability of the approach.

[1]  Hoang Tuy,et al.  Parametric approach to a class of nonconvex global optimization problems , 1988 .

[2]  H. P. Benson,et al.  An algorithm for optimizing over the weakly-efficient set , 1986 .

[3]  Hoang Tuy,et al.  Convexity and Monotonicity in Global Optimization , 2001 .

[4]  Hoang Tuy,et al.  A New Approach to Optimization Under Monotonic Constraint , 2000, J. Glob. Optim..

[5]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[6]  Nguyen V. Thoai,et al.  Conical Algorithm in Global Optimization for Optimizing over Efficient Sets , 2000, J. Glob. Optim..

[7]  Hiroshi Konno,et al.  Optimization of Polynomial Fractional Functions , 2004, J. Glob. Optim..

[8]  Y. Ishizuka,et al.  Optimality conditions for directionally differentiable multi-objective programming problems , 1992 .

[9]  J. Ecker,et al.  Optimizing a linear function over an efficient set , 1994 .

[10]  Naum Z. Shor,et al.  Lagrangian bounds in multiextremal polynomial and discrete optimization problems , 2002, J. Glob. Optim..

[11]  Faiz A. Al-Khayyal,et al.  Monotonic Optimization: Branch and Cut Methods , 2005 .

[12]  S. Bolintineanu,et al.  Optimality Conditions for Minimization over the (Weakly or Properly) Efficient Set , 1993 .

[13]  P. T. Thach,et al.  Dual approach to minimization on the set of pareto-optimal solutions , 1996 .

[14]  H. Tuy Global Minimization of a Difference of Two Convex Functions , 1987 .

[15]  Hoang Tuy,et al.  Monotonicity in the Framework of Generalized Convexity , 2005 .

[16]  A. Smilde,et al.  Multicriteria decision making , 1992 .

[17]  Hoang Tuy,et al.  A Unified Monotonic Approach to Generalized Linear Fractional Programming , 2003, J. Glob. Optim..

[18]  Hoang Tuy,et al.  Partly Convex and Convex-Monotonic Optimization Problems , 2003, HPSC.

[19]  Nicolae Popovici,et al.  Bicriteria Linear Fractional Optimization , 2000 .

[20]  L. Muu,et al.  Simplicially-Constrained DC Optimization over Efficient and Weakly Efficient Sets , 2003 .

[21]  E. Choo,et al.  Bicriteria linear fractional programming , 1982 .

[22]  S. Bolintineanu,et al.  Minimization of a quasi-concave function over an efficient set , 1993, Math. Program..

[23]  Harold P. Benson,et al.  A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case , 1993, J. Glob. Optim..

[24]  Michel Minoux,et al.  Discrete Monotonic Optimization with Application to a Discrete Location Problem , 2006, SIAM J. Optim..

[25]  H. Tuy Convex analysis and global optimization , 1998 .

[26]  Hoang Tuy,et al.  Monotonic Optimization: Problems and Solution Approaches , 2000, SIAM J. Optim..

[27]  Luc T Le Reverse polyblock approximation for optimization over the weakly efficient set and efficient set , 2001 .

[28]  Harold P. Benson,et al.  An Outcome Space Branch and Bound-Outer Approximation Algorithm for Convex Multiplicative Programming , 1999, J. Glob. Optim..

[29]  Harold P. Benson,et al.  An all-linear programming relaxation algorithm for optimizing over the efficient set , 1991, J. Glob. Optim..

[30]  H. P. Benson,et al.  Optimization over the efficient set , 1984 .

[31]  Harold P. Benson,et al.  Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming , 2000 .

[32]  Johan Philip,et al.  Algorithms for the vector maximization problem , 1972, Math. Program..