Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation

Computational high-throughput screening was carried out to assess a large number of experimentally reported metal–organic frameworks (MOFs) and zeolites for their utility in hexane isomer separation. Through the work, we identified many MOFs and zeolites with high selectivity (SL+M > 10) for the group of n-hexane, 2-methylpentane, and 3-methylpentane (linear and monobranched isomers) versus 2,2-dimethylbutane and 2,3-dimethylbutane (dibranched isomers). This group of selective sorbents includes VICDOC (Fe2(BDP)3), a MOF with triangular pores that is known to exhibit high isomer selectivity and capacity. For three of these structures, the adsorption isotherms for a 10-component mixture of hexane and heptane isomers were calculated. Subsequent simulations of column breakthrough curves showed that the DEYVUA MOF exhibits a longer process cycle time than VICDOC MOF or MRE zeolite, which are previously reported, high-performing materials, illustrating the importance of capacity in designing MOFs for practical ...

[1]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[2]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[3]  D. Dubbeldam,et al.  Exploiting Large-Pore Metal-Organic Frameworks for Separations through Entropic Molecular Mechanisms. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Maciej Haranczyk,et al.  What Are the Best Materials To Separate a Xenon/Krypton Mixture? , 2015 .

[5]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[6]  Peng Bai,et al.  Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling , 2015, Nature Communications.

[7]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[8]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[9]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[10]  P. Bai,et al.  TraPPE-zeo: Transferable potentials for phase equilibria force field for all-silica zeolites , 2013 .

[11]  Omar K. Farha,et al.  Activation of metal–organic framework materials , 2013 .

[12]  Maciej Haranczyk,et al.  High accuracy geometric analysis of crystalline porous materials , 2013 .

[13]  Mingyan Wu,et al.  The 3D porous metal–organic frameworks based on bis(pyrazinyl)–trizole: structures, photoluminescence and gas adsorption properties , 2013 .

[14]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[15]  Guo‐Ping Yang,et al.  Dynamic Zn-based metal–organic framework: stepwise adsorption, hysteretic desorption and selective carbon dioxide uptake , 2013 .

[16]  J. L. Priego,et al.  Hybrid Polyfunctional Systems Based on Nickel(II) Isonicotinate , 2013 .

[17]  R. Raptis,et al.  Selective CO2 Adsorption on Metal-Organic Frameworks Based on Trinuclear Cu3-Pyrazolato Complexes: An Experimental and Computational Study , 2013 .

[18]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[19]  R. Krishna,et al.  Computer-assisted screening of ordered crystalline nanoporous adsorbents for separation of alkane isomers. , 2012, Angewandte Chemie.

[20]  Jinbo Zhao,et al.  Assembly of Two Porous Cadmium(II) Frameworks: Selective Adsorption and Luminescent Property , 2012 .

[21]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[22]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[23]  C. Pettinari,et al.  Novel coordination frameworks incorporating the 4,4'-bipyrazolyl ditopic ligand. , 2012, Inorganic chemistry.

[24]  A. Simon‐Masseron,et al.  Separation of C6 Paraffins Using Zeolitic Imidazolate Frameworks: Comparison with Zeolite 5A , 2012 .

[25]  Sankar Nair,et al.  Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges. , 2012, Journal of the American Chemical Society.

[26]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[27]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[28]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[29]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[30]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[31]  T. Maji,et al.  Coordination driven axial chirality in a microporous solid assembled from an achiral linker via in situ C-N coupling. , 2011, Chemical communications.

[32]  Jie‐Peng Zhang,et al.  Flexible porous coordination polymers constructed from 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4'-azopyridine. , 2011, Dalton transactions.

[33]  R. Banerjee,et al.  Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. , 2011, Chemical communications.

[34]  M. W. Hosseini,et al.  Molecular tectonics: control of interpenetration in cuboid 3-D coordination networks , 2011 .

[35]  B. Abrahams,et al.  A simple lithium(I) salt with a microporous structure and its gas sorption properties. , 2010, Angewandte Chemie.

[36]  P. K. Bharadwaj,et al.  Diamondoid Three-Dimensional Metal-Organic Framework Showing Structural Transformation with Guest Molecules , 2009 .

[37]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[38]  O. Yaghi,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[39]  Christian Baerlocher,et al.  Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. , 2008, Nature materials.

[40]  S. Nguyen,et al.  Ligand-elaboration as a strategy for engendering structural diversity in porous metal-organic framework compounds. , 2008, Chemical communications.

[41]  Junliang Sun,et al.  A zeolite family with chiral and achiral structures built from the same building layer. , 2008, Nature materials.

[42]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[43]  N. Champness,et al.  A biporous coordination framework with high H2 storage density. , 2008, Chemical communications.

[44]  Rajamani Krishna,et al.  Screening of zeolite adsorbents for separation of hexane isomers: A molecular simulation study , 2007 .

[45]  C. Kirschhock,et al.  Rotational entropy driven separation of alkane/isoalkane mixtures in zeolite cages. , 2005, Angewandte Chemie.

[46]  R. Lobo,et al.  New description of the disorder in zeolite ZSM-48. , 2002, Journal of the American Chemical Society.

[47]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[48]  J. Falconer,et al.  Separation of hexane isomers through nonzeolite pores in ZSM-5 zeolite membranes , 1999 .

[49]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[50]  P. Jacobs,et al.  High-Temperature Low-Pressure Adsorption of Branched C5−C8 Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite , 1998 .

[51]  J. Ilja Siepmann,et al.  Predicting multicomponent phase equilibria and free energies of transfer for alkanes by molecular simulation , 1997 .

[52]  K. S. Knaebel,et al.  Pressure swing adsorption , 1993 .

[53]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[54]  J. M. Bennett,et al.  The structure of calcined AIP4-31: A new framework topology containing one-dimensional 12-ring pores , 1992 .

[55]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[56]  J. L. Schlenker,et al.  The framework topology of ZSM-48: A high silica zeolite , 1985 .

[57]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[58]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[59]  L. Pauling,et al.  THE STRUCTURE OF SOME SODIUM AND CALCIUM ALUMINOSILICATES. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Carter,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013 .

[61]  JtRN Ilja SIEPMANNt Conflgurational bias Monte Carlo: a new sampling scheme for flexible chains , 2006 .

[62]  G. Bennett,et al.  Adsorbents: Fundamentals and Applications , 2004 .

[63]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .