The WiggleZ Dark Energy Survey: survey design and first data release

The WiggleZ Dark Energy Survey is a survey of 240 000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4–8 Gyr. The target galaxies are selected using ultraviolet (UV) photometry from the Galaxy Evolution Explorer satellite, with a flux limit of NUV < 22.8 mag . We also require that the targets are detected at optical wavelengths, specifically in the range 20.0 < r < 22.5 mag . We use the Lyman break method applied to the UV colours, with additional optical colour limits, to select high-redshift galaxies. The galaxies generally have strong emission lines, permitting reliable redshift measurements in relatively short exposure times on the AAT. The median redshift of the galaxies is z_(med)= 0.6 . The redshift range containing 90 per cent of the galaxies is 0.2 < z < 1.0 . The survey will sample a volume of ~1 Gpc^3 over a projected area on the sky of 1000 deg^2, with an average target density of 350 deg^(−2). Detailed forecasts indicate that the survey will measure the BAO scale to better than 2 per cent and the tangential and radial acoustic wave scales to approximately 3 and 5 per cent, respectively. Combining the WiggleZ constraints with existing cosmic microwave background measurements and the latest supernova data, the marginalized uncertainties in the cosmological model are expected to be σ(Ω_m) = 0.02 and σ(w) = 0.07 (for a constant w model). The WiggleZ measurement of w will constitute a robust, precise and independent test of dark energy models. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission-line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show that they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100 000 galaxies measured for the project.

[1]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[2]  Nikolay,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005, The Astrophysical Journal Supplement Series.

[3]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[4]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[5]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[6]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[7]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[8]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[9]  Chris Simpson,et al.  Spectroscopic follow-up of a cluster candidate at z = 1.45 , 2007, 0708.3838.

[10]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[11]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[12]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[13]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[14]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[15]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[16]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[17]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[18]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[19]  D. Eisenstein,et al.  The Baryon Oscillation Spectroscopic Survey: Precision measurements of the absolute cosmic distance scale , 2009, 0902.4680.

[20]  Paul C. Hewett,et al.  Peering through the OH forest: a new technique to remove residual sky features from Sloan Digital Sky Survey spectra , 2005 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[23]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[24]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[25]  S. Brough,et al.  The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.

[26]  Vladimir Churilov,et al.  Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[27]  Will Saunders,et al.  AAOmega: a scientific and optical overview , 2004, SPIE Astronomical Telescopes + Instrumentation.

[28]  B. Peterson,et al.  Interpretation of the Faint Galaxy Number Counts in the K Band , 1995 .

[29]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[30]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[31]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[32]  Asantha Cooray,et al.  Measuring Angular Diameter Distances through Halo Clustering , 2001, astro-ph/0105061.

[33]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[34]  S. Maddox,et al.  The cosmological constant and cold dark matter , 1990, Nature.

[35]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[36]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[37]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[38]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[39]  P. Coles Galaxy formation with a local bias , 1993 .

[40]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0507678.

[41]  B. Peterson,et al.  Faint galaxies : bounds on the epoch of galaxy formation and the cosmological deceleration parameter , 1991 .

[42]  N. Hambly,et al.  The SuperCOSMOS Sky Survey . Paper I : Introduction and Description , 2001 .

[43]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[44]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[45]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[46]  Arjun Dey,et al.  Next Generation Wide-Field Multi-Object Spectroscopy , 2002 .

[47]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[48]  Keith Shortridge,et al.  Multi-object spectroscopy field configuration by simulated annealing , 2006 .

[49]  Matthew Colless,et al.  The tiling algorithm for the 6dF Galaxy Survey , 2004, astro-ph/0403502.

[50]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[51]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[52]  Matthew Colless,et al.  The 6dF Galaxy Survey: Samples, observational techniques and the first data release , 2004, astro-ph/0403501.

[53]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[54]  Mark Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996 .

[55]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[56]  R. Ellis,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[57]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[58]  S. Brough,et al.  The wiggleZ dark energy survey , 2008 .

[59]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[60]  Will Saunders,et al.  AAOmega: a multipurpose fiber-fed spectrograph for the AAT , 2004, SPIE Astronomical Telescopes + Instrumentation.

[61]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[62]  Paul S. Smith,et al.  Hot DB White Dwarfs from the Sloan Digital Sky Survey , 2006, astro-ph/0606702.

[63]  Eric V. Linder Baryon oscillations as a cosmological probe , 2003 .

[64]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[65]  C. Blake,et al.  Measuring the cosmic evolution of dark energy with baryonic oscillations in the galaxy power spectrum , 2005, astro-ph/0505608.

[66]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.