Double k -class estimators in regression models with non-spherical disturbances

In this paper, we consider a family of feasible generalised double k-class estimators in a linear regression model with non-spherical disturbances. We derive the large sample asymptotic distribution of the proposed family of estimators and compare its performance with the feasible generalized least squares and Stein-rule estimators using the mean squared error matrix and risk under quadratic loss criteria. A Monte-Carlo experiment investigates the finite sample behaviour of the proposed family of estimators.

[1]  Xian-Wei Yu,et al.  The minimum mean square error linear estimator and ridge regression , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[2]  大谷 一博 Pre-Test Double k-Class Estimators in Linear Regression , 1998 .

[3]  K. Ohtani Minimum mean squared error estimation of each individual coefficient in a linear regression model , 1997 .

[4]  V. K. Srivastava,et al.  Selecting a double k-class estimator for regression coefficients , 1993 .

[5]  G. Judge,et al.  Improved estimation under collinearity and squared error loss , 1990 .

[6]  George G. Judge,et al.  Improved prediction in the presence of multicollinearity , 1987 .

[7]  Thomas J. Rothenberg,et al.  APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES , 1984 .

[8]  H. Vinod Improved stein-rule estimator for regression problems , 1980 .

[9]  R. W. Farebrother,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[10]  R. Farebrother The Minimum Mean Square Error Linear Estimator and Ridge Regression , 1975 .

[11]  J. Neyman,et al.  Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , 1963 .

[12]  Jerzy Neyman,et al.  Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability : held at the Statistical Laboratory, University of California, December, 1954, July and August, 1955 , 1958 .

[13]  Helge Toutenburg,et al.  Linear models : least squares and alternatives , 1999 .

[14]  K. Ohtani Exact small sample properties of an operational variant of the minimum mean squared error estimator , 1996 .

[15]  K. Ohtani On an adjustment of degrees of freedom in the minimim mean squared error ertimator , 1996 .

[16]  H. Vinod,et al.  Large sample asymptotic properties of the double k-class estimators in linear regression models , 1995 .

[17]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[18]  A. Chaturvedi,et al.  STEIN RULE ESTIMATION IN LINEAR MODEL WITH NONSCALAR ERROR COVARIANCE MATRIX , 1990 .

[19]  V. K. Srivastava,et al.  A necessary and sufficient condition for the dominance of an improved family of estimators in linear regression models , 1986 .

[20]  S. Menjoge On double k-class estimators of coefficients in linear regression , 1984 .

[21]  R. Carter Double k-Class Shrinkage Estimators in Multiple Regression , 1984 .

[22]  Rand R. Wilcox,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[23]  Henri Theil Principles of econometrics , 1971 .

[24]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .