High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces

We use the 3ω method to study the thermal conductivity of composites of nanoscale alumina particles in polymethylmethacrylate (PMMA) matrices. Effective medium theory and data for the changes in conductivity produced by low volume fractions of particle fillers are used to estimate the thermal conductance G of PMMA/alumina interfaces in the temperature range of 40<T<280 K. Near room temperature, G≈30±10 MW m−2 K−1 and the critical particle radius, r0=Λ0/G, is extremely small, r0≈7.5±2.5 nm. (Λ0=0.205 W m−1 K−1 is the conductivity of the PMMA matrix.) Therefore, high volume fractions of typical ceramic nanoparticles with r≫r0 can be used in thermal interface materials such as adhesives, pastes, and pads.

[1]  G. Kuczynski Effect of Elastic Strain on the Electrical Resistance of Metals , 1954 .

[2]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[3]  S. Phillpot,et al.  Two regimes of thermal resistance at a liquid-solid interface , 2003 .

[4]  Seungmin Lee,et al.  Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings , 1998 .

[5]  D. Hasselman,et al.  Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide-reinforced aluminium-matrix composite , 1993 .

[6]  Bernhard Wunderlich,et al.  The ATHAS database on heat capacities of polymers , 1995 .

[7]  R. Simha,et al.  Multiple transitions in polyalkyl methacrylates. , 1968 .

[8]  Richard W. Siegel,et al.  Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites , 2002 .

[9]  R. Simha,et al.  Thermal expansivities of polymers at cryogenic temperatures. , 1968 .

[10]  Y. Benveniste,et al.  Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .

[11]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[12]  Richard W. Siegel,et al.  Glass transition behavior of alumina/polymethylmethacrylate nanocomposites , 2002 .

[13]  T. Whall,et al.  Electrical resistivity of Au Fe alloys in the spin-glass, mictomagnetic, and ferromagnetic regimes , 1974 .

[14]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[15]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[16]  C. Cremers,et al.  Thermal conductivity 21 , 1990 .

[17]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[18]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[19]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[20]  Soojin Park,et al.  Influence of silane coupling agents on the surface energetics of glass fibers and mechanical interfacial properties of glass fiber-reinforced composites , 2000 .