Journal Pre-proof A model of windblown sand coupled with morphodynamic evolution: erosion, transport, deposit and

Modelling unsteady windblown sand dynamics requires not only to treat the sand present in the air as a suspended constituent of a mixture, but also to take care of erosion and sedimentation phenomena and consequently of the morphodynamic evolution of the sand-bed surface, including avalanching, especially in presence of natural or human built obstacles, artifacts, and infrastructures. With this aim in mind, we present a comprehensive multiphase model capable of accurately simulating all the physical phenomena mentioned above, producing satisfactory results, with a reasonable computational e ff ort. As case tests, two- and three-dimensional simulations of dune evolution are reported, as well as windblown sand transport over a straight vertical wall. Example of the sand transport around other obstacles are given to show the flexibility of the model and its usefulness for such engineering applications.

[1]  Claudio Canuto,et al.  A multi-timestep Robin-Robin domain decomposition method for time dependent advection-diffusion problems , 2019, Appl. Math. Comput..

[2]  L. Preziosi,et al.  Wind-blown particulate transport: A review of computational fluid dynamics models , 2019, Mathematics in Engineering.

[3]  Guanglei Gao,et al.  Application of Boundary Layer Displacement Thickness in Wind Erosion Protection Evaluation: Case Study of a Salix psammophila Sand Barrier , 2019, International journal of environmental research and public health.

[4]  Luca Bruno,et al.  Shield for Sand: An Innovative Barrier for Windblown Sand Mitigation , 2018, Recent Patents on Engineering.

[5]  Luca Bruno,et al.  Windblown sand along railway infrastructures: A review of challenges and mitigation measures , 2018, Journal of Wind Engineering and Industrial Aerodynamics.

[6]  Luca Bruno,et al.  Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines , 2018 .

[7]  N. Huang,et al.  Sand transportation and reverse patterns over leeward face of sand dune , 2017 .

[8]  Luca Bruno,et al.  Windblown sand saltation: A statistical approach to fluid threshold shear velocity , 2016 .

[9]  C. Bonadonna,et al.  On the drag of freely falling non-spherical particles , 2016, 1810.08787.

[10]  Y. Wang,et al.  3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes , 2016 .

[11]  Jiaqiang Lei,et al.  Disturbance of the inclined inserting-type sand fence to wind–sand flow fields and its sand control characteristics , 2016 .

[12]  Xin Gao,et al.  Phase diagrams of dune shape and orientation depending on sand availability , 2015, Scientific Reports.

[13]  Bailiang Li,et al.  Aerodynamics and morphodynamics of sand fences: A review , 2015 .

[14]  Xiaofei Shi,et al.  A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences , 2015 .

[15]  E. Farrell,et al.  A new relationship between grain size and fall (settling) velocity in air , 2015 .

[16]  Luca Bruno,et al.  A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation , 2015, Appl. Math. Lett..

[17]  Luca Bruno,et al.  Sand transverse dune aerodynamics: 3D Coherent Flow Structures from a computational study , 2015, ArXiv.

[18]  J. S. Andrade,et al.  Morphodynamic modeling of aeolian dunes: Review and future plans , 2014 .

[19]  Pascal Dupont,et al.  Aeolian sand transport: Length and height distributions of saltation trajectories , 2014 .

[20]  Orencio Durán,et al.  Vegetation controls on the maximum size of coastal dunes , 2013, Proceedings of the National Academy of Sciences.

[21]  José S. Andrade,et al.  Numerical modeling of the wind flow over a transverse dune , 2013, Scientific Reports.

[22]  Almerindo D. Ferreira,et al.  Numerical simulation of sand dune erosion , 2013, Environmental Fluid Mechanics.

[23]  N. Huang,et al.  Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples , 2012 .

[24]  Clément Narteau,et al.  Morphology and dynamics of star dunes from numerical modelling , 2012 .

[25]  P. Dupont,et al.  Particle velocity distribution in saltation transport. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Liejin Guo,et al.  Discrete particle simulation of mixed sand transport , 2012 .

[27]  Liqiang Kang,et al.  Discrete particle model of aeolian sand transport: Comparison of 2D and 2.5D simulations , 2012 .

[28]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[29]  Almerindo D. Ferreira,et al.  Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes , 2011 .

[30]  J. S. Andrade,et al.  Transverse instability of dunes. , 2011, Physical review letters.

[31]  L. Formaggia,et al.  Mathematical modelling for the evolution of aeolian dunes formed by a mixture of sands: entrainment-deposition formulation , 2011 .

[32]  Jianjun Qu,et al.  Numerical simulation of wind flow over transverse and pyramid dunes , 2011 .

[33]  Almerindo D. Ferreira,et al.  Computational modeling of the wind erosion on a sinusoidal pile using a moving boundary method , 2011 .

[34]  Peter Richards,et al.  Appropriate boundary conditions for computational wind engineering models revisited , 2011 .

[35]  P. Dupont,et al.  Scaling laws in aeolian sand transport. , 2011, Physical review letters.

[36]  Hans J. Herrmann,et al.  A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields , 2010 .

[37]  Ning Zhang,et al.  Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles , 2010 .

[38]  Liqiang Kang,et al.  Numerical investigation of particle velocity distributions in aeolian sand transport , 2010 .

[39]  H. Herrmann,et al.  Dune formation under bimodal winds , 2009, Proceedings of the National Academy of Sciences.

[40]  Clément Narteau,et al.  Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms , 2008 .

[41]  H. Herrmann,et al.  Saltation transport on Mars. , 2007, Physical review letters.

[42]  Hans Jürgen Herrmann,et al.  Flow separation in the lee side of transverse dunes: A numerical investigation , 2006 .

[43]  H. Herrmann,et al.  Vegetation against dune mobility. , 2006, Physical review letters.

[44]  Liejin Guo,et al.  Eulerian–Lagrangian simulation of aeolian sand transport , 2006 .

[45]  Hans Jürgen Herrmann,et al.  Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses , 2004, cond-mat/0410178.

[46]  A. G. Gerber,et al.  A convection–diffusion CFD model for aeolian particle transport , 2004 .

[47]  Bruno Andreotti,et al.  A two-species model of aeolian sand transport , 2004, Journal of Fluid Mechanics.

[48]  H. Herrmann,et al.  Breeding and solitary wave behavior of dunes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  D. Parsons,et al.  Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry , 2004 .

[50]  N. Endo,et al.  Collision Dynamics of Two Barchan Dunes Simulated Using a Simple Model , 2004, cond-mat/0403312.

[51]  Daniel R. Parsons,et al.  3 ARTICLE IN PRESS 4 , 2022 .

[52]  Veit Schwämmle,et al.  Geomorphology: Solitary wave behaviour of sand dunes , 2003, Nature.

[53]  José S. Andrade,et al.  Wind velocity and sand transport on a barchan dune , 2003 .

[54]  H. Herrmann,et al.  A model of Barchan dunes including lateral shear stress , 2003, The European physical journal. E, Soft matter.

[55]  P. P. Brown,et al.  Sphere Drag and Settling Velocity Revisited , 2003 .

[56]  Stéphane Douady,et al.  Relevant length scale of barchan dunes. , 2002, Physical review letters.

[57]  H. Herrmann,et al.  Minimal model for aeolian sand dunes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Bruno Andreotti,et al.  Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans , 2002, cond-mat/0201103.

[59]  H. Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  S. Alhajraf Numerical simulation of drifting sand , 2000 .

[61]  Hans J. Herrmann,et al.  The shape of the barchan dunes of Southern Morocco , 2000 .

[62]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[63]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[64]  K. H. Andersen,et al.  A SIMPLE MODEL FOR THE VARIOUS PATTERN DYNAMICS OF DUNES , 1998 .

[65]  B. Werner Eolian dunes: Computer simulations and attractor interpretation , 1995 .

[66]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[67]  F. Menter ZONAL TWO EQUATION k-w TURBULENCE MODELS FOR AERODYNAMIC FLOWS , 1993 .

[68]  Kiyoshi Horikawa,et al.  FUNCTION OF SAND FENCE PLACED IN FRONT OF EMBANKMENT , 1991 .

[69]  P. Haff,et al.  Simulation of Eolian Saltation , 1988, Science.

[70]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[71]  S. Lee,et al.  Trajectories of saltating sand particles behind a porous fence , 2015 .

[72]  Y. Wang,et al.  Evolution of downsized crescent-shaped dune in wind tunnel experiment , 2014 .

[73]  S. Balachandar,et al.  Turbulent Dispersed Multiphase Flow , 2010 .

[74]  T. Stathopoulos,et al.  CFD simulation of the atmospheric boundary layer: wall function problems , 2007 .

[75]  F. Menter,et al.  Ten Years of Industrial Experience with the SST Turbulence Model , 2003 .

[76]  E. Barnea,et al.  A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems , 1973 .