A comparison of power requirements of traveling-wave LiNbO 3 optical couplers and inteferometric modulators

It is shown that a coupler and interferometer may be considered two extremes of a generalized two-guide coupler device in which electrode length is less than a coupling length. For electrode lengths less than half of a coupling length, the generalized device looks more like an interferometer than a coupler. The impedance and electrical loss of asymmetric-stripe and coplanar-waveguide transmission lines on LiNbO 3 for thick as well as thin electrodes are then presented. The effects of the electrical loss on the bandwidth and drive requirements of traveling-wave LiNbO 3 couplers and interferometric devices are discussed, and it is shown that electrical loss in the transmission line is more detrimental to a coupler than to an interferometer. These results are then used to compare the drive power requirements of coupler and interferometric devices, and it is shown that for the same bandwidth and same optical guide dimensions, an interferometric device with a coplanar transmission line can require a lower drive power than a coupler with an asymmetric-stripe line.

[1]  Nicolaos G. Alexopoulos,et al.  Integrated-Circuit Structures on Anisotropic Substrates , 1985 .

[2]  G. D. Thurmond,et al.  17‐GHz bandwidth electro‐optic modulator , 1983 .

[3]  Steven K. Korotky,et al.  Fully connectorized high-speed Ti:LiNbO 3 switch/modulator for time-division multiplexing and data encoding , 1985 .

[4]  D. Marcuse Optimal electrode design for integrated optics modulators , 1982 .

[5]  T. Ranganath,et al.  Ti-diffused LiNbO 3 branched-waveguide modulators: Performance and design , 1977 .

[6]  N. P. Economou,et al.  Fast compact optical waveguide switch modulator , 1981 .

[7]  S Uehara Calibration of optical modulator frequency response with application to signal level control. , 1978, Applied optics.

[8]  Brian H. Kolner,et al.  Microwave integrated optical modulator , 1984 .

[9]  R. Becker Broad-band guided-wave electrooptic modulators , 1984 .

[10]  R. A. Becker,et al.  Traveling‐wave electro‐optic modulator with maximum bandwidth‐length product , 1984 .

[11]  B. T. Szentkuti,et al.  Simple analysis of anisotropic microstrip lines by a transform method , 1976 .

[12]  Steven K. Korotky,et al.  Time- and frequency-domain response of directional-coupler traveling-wave optical modulators , 1983 .

[13]  O. Mikami,et al.  Traveling wave optical modulator using a directional coupler LiNbO 3 waveguide , 1980 .

[14]  R. Alferness Waveguide Electrooptic Modulators , 1982 .

[15]  G. Eisenstein,et al.  4-Gb/s transmission experiment over 117 km of optical fiber using a Ti:LiNbO3external modulator , 1985, Journal of Lightwave Technology.

[16]  F. Leonberger,et al.  High-speed operation of LiNbO3 electro-optic interferometric waveguide modulators. , 1980, Optics letters.

[17]  Steven K. Korotky,et al.  Low-loss broadband Ti:LiNbO3 waveguide phase modulators for coherent systems , 1986, Topical Meeting on Integrated and Guided-Wave Optics.

[18]  R. Alferness,et al.  Characteristics of Ti-diffused lithium niobate optical directional couplers. , 1979, Applied optics.

[19]  F. J. Leonberger,et al.  4‐bit 828‐megasample/s electro‐optic guided‐wave analog‐to‐digital converter , 1982 .

[20]  Anand Gopinath Losses in Coplanar Waveguides , 1982 .

[21]  Steven K. Korotky,et al.  High-speed traveling-wave directional coupler switch/modulator for λ = 1.32 µm , 1983 .

[22]  Tadasi Sueta,et al.  Broad-band traveling-wave modulator using a LiNbO 3 optical waveguide , 1977 .

[23]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[24]  R. Schmidt,et al.  Switched directional couplers with alternating Δ Β , 1976 .

[25]  O. Ramer,et al.  Integrated optic electrooptic modulator electrode analysis , 1982 .

[26]  P. Silvester,et al.  TEM wave properties of microstrip transmission lines , 1968 .